LEPREVOST, F.* , TOPAL, A. O.* , MANCELLARI, E.* , & LAVANGNANANDA, K.*. (2023). Zone-of-Interest Strategy for the Creation of High-Resolution Adversarial Images Against Convolutional Neural Networks. In 2023 15th International Conference on Information Technology and Electrical Engineering, ICITEE 2023 (pp. 127-132). Institute of Electrical and Electronics Engineers Inc. doi:10.1109/ICITEE59582.2023.10317668 Peer reviewed * These authors have contributed equally to this work. |
LEPREVOST, F., TOPAL, A. O., & MANCELLARI, E. (2023). Creating High-Resolution Adversarial Images Against Convolutional Neural Networks with the Noise Blowing-Up Method. In N. T. Nguyen & B. Hnatkowska (Eds.), Intelligent Information and Database Systems - 15th Asian Conference, ACIIDS 2023, Proceedings (pp. 121-134). Springer Science and Business Media Deutschland GmbH. doi:10.1007/978-981-99-5834-4_10 Peer reviewed |
MANCELLARI, E., Bedalli, E., & Rada, R. (2020). Some assessments on applications of fuzzy clustering techniques in multimedia compression systems. In 11th International Conference on Management of Digital EcoSystems, MEDES 2019 (pp. 111-114). Association for Computing Machinery, Inc. doi:10.1145/3297662.3365799 Editorial reviewed |
Bedalli, E., MANCELLARI, E., & Haskasa, E. (2018). Exploring User Feedback Data via a Hybrid Fuzzy Clustering Model Combining Variations of FCM and Density-Based Clustering. In Lecture Notes on Data Engineering and Communications Technologies (pp. 71-81). Springer Science and Business Media Deutschland GmbH. doi:10.1007/978-3-319-98557-2_7 Editorial reviewed |
Bedalli, E., MANCELLARI, E., & Asilkan, O. (25 October 2016). A Heterogeneous Cluster Ensemble Model for Improving the Stability of Fuzzy Cluster Analysis. Procedia Computer Science, 102, 129 - 136. doi:10.1016/j.procs.2016.09.379 Editorial reviewed |