Profil

ZHENG Guangqu

Main Referenced Co-authors
NOURDIN, Ivan  (3)
Haouala, Ezedine (2)
Lechiheb, Atef (2)
DÖBLER, Christian  (1)
VIDOTTO, Anna  (1)
Main Referenced Keywords
exchangeable pairs (2); Stein's method (2); discrete Malliavin calculus (1); fourth moment theorem (1); Fourth moment theorems (1);
Main Referenced Disciplines
Mathematics (7)

Publications (total 7)

The most downloaded
289 downloads
Zheng, G. (2018). Recent developments around the Malliavin-Stein approach (Fourth moment phenomena via exchangeable pairs) [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/35536 https://hdl.handle.net/10993/35536

The most cited

13 citations (Scopus®)

Döbler, C., Vidotto, A., & Zheng, G. (2018). Fourth moment theorems on The Poisson space in any dimension. Electronic Journal of Probability. doi:10.1214/18-EJP168 https://hdl.handle.net/10993/31706

Zheng, G. (2018). Recent developments around the Malliavin-Stein approach (Fourth moment phenomena via exchangeable pairs) [Doctoral thesis, Unilu - University of Luxembourg]. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/35536

Lechiheb, A., Nourdin, I., Zheng, G., & Haouala, E. (2018). Convergence of random oscillatory integrals in the presence of long-range dependence and application to homogenization. Probability and Mathematical Statistics, 38 (2), 271-286. doi:10.19195/0208-4147.38.2.2
Peer reviewed

Döbler, C., Vidotto, A., & Zheng, G. (2018). Fourth moment theorems on The Poisson space in any dimension. Electronic Journal of Probability. doi:10.1214/18-EJP168
Peer Reviewed verified by ORBi

Zheng, G. (May 2017). Normal approximation and almost sure central limit theorem for non-symmetric Rademacher functionals. Stochastic Processes and Their Applications, 127 (5), 1622-1636. doi:10.1016/j.spa.2016.09.002
Peer reviewed

Nourdin, I., & Zheng, G. (2017). Exchangeable pairs on Wiener chaos. In High-Dimensional Probability VIII Proceedings. Springer.
Peer reviewed

Zheng, G. (2017). A Peccati-Tudor type theorem for Rademacher chaoses. ORBilu-University of Luxembourg. https://orbilu.uni.lu/handle/10993/32843.

Lechiheb, A., Nourdin, I., Zheng, G., & Haouala, E. (2016). Convergence of random oscillatory integrals in the presence of long-range dependence and application to homogenization. Probability and Mathematical Statistics. doi:10.19195/0208-4147.38.2.2
Peer reviewed

Contact ORBilu