[en] Since the Stockholm Declaration on the human environment in 1972, there has been a growing recognition of the impact of human activities on Earth's ecosystems. This has created an increasing need for modeling and predicting the resilience of ecosystems, which is crucial not only for understanding ecosystem patterns and processes but also for addressing climate change and implementing effective conservation and management strategies. Despite the importance of this issue, the intrinsic complexity of ecosystems and the lack of sufficient data present considerable challenges. To address these challenges, we propose an approach that combines model-driven engineering and artificial intelligence. Specifically, we propose a formalization for modeling and verifying ecosystem requirements, a method for synthesizing heterogeneous ecosystem resilience data, and a product line of neural network architectures adaptable to diverse properties and types of ecosystem scenarios to study. Additionally, we propose a model-driven process specification detailing the different artifacts, stakeholder roles, tasks, and model transformations of the proposed approach. This paper outlines the problem and preliminary work, presents the proposed approach, which is the current focus of an ongoing Ph.D. thesis, and discusses the future research contributions.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SOUSA, Tiago ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Computer Science (DCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Towards Modeling and Predicting the Resilience of Ecosystems
Date de publication/diffusion :
2023
Nom de la manifestation :
ACM/IEEE 26th International Conference on Model-Driven Engineering Languages and Systems
Organisateur de la manifestation :
ACM SIGSOFT, IEEE TCSE
Lieu de la manifestation :
Västerås, Suède
Date de la manifestation :
01-10-2023 to 06-10-2023
Manifestation à portée :
International
Titre de l'ouvrage principal :
Towards Modeling and Predicting the Resilience of Ecosystems
L. B. Sohn, "Stockholm Declaration on the Human Environment, The, " Harvard International Law Journal, vol. 14, p. 423, 1973.
J. D. Sachs, "From Millennium Development Goals to Sustainable Development Goals, " The Lancet, vol. 379, no. 9832, pp. 2206-2211, Jun. 2012.
K. Abbass, M. Z. Qasim, H. Song, M. Murshed, H. Mahmood, and I. Younis, "A review of the global climate change impacts, adaptation, and sustainable mitigation measures, " Environmental Science and Pollution Research, vol. 29, no. 28, pp. 42 539-42 559, Jun. 2022.
G. T. Pecl, M. B. Ara'ujo, J. D. Bell, J. Blanchard, T. C. Bonebrake, I.-C. Chen, T. D. Clark, R. K. Colwell, F. Danielsen, B. Evengård, L. Falconi, S. Ferrier, S. Frusher, R. A. Garcia, R. B. Griffis, A. J. Hobday, C. Janion-Scheepers, M. A. Jarzyna, S. Jennings, J. Lenoir, H. I. Linnetved, V. Y. Martin, P. C. McCormack, J. McDonald, N. J. Mitchell, T. Mustonen, J. M. Pandolfi, N. Pettorelli, E. Popova, S. A. Robinson, B. R. Scheffers, J. D. Shaw, C. J. B. Sorte, J. M. Strugnell, J. M. Sunday, M.-N. Tuanmu, A. Verg'es, C. Villanueva, T. Wernberg, E. Wapstra, and S. E. Williams, "Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being, " Science, vol. 355, no. 6332, p. eaai9214, Mar. 2017.
T. Sasaki, T. Furukawa, Y. Iwasaki, M. Seto, and A. S. Mori, "Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances, " Ecological Indicators, vol. 57, pp. 395-408, Oct. 2015.
A. Simon, "Modelling Climate-Sensitive Forest Succession to Assess Impacts of Climate Change and Support Decision Making, " GI Forum, vol. 1, pp. 65-81, 2021.
L. He, J. Shen, and Y. Zhang, "Ecological vulnerability assessment for ecological conservation and environmental management, " Journal of Environmental Management, vol. 206, pp. 1115-1125, Jan. 2018.
Portner, H.-O. and Roberts, D.C. and Tignor, M. and Poloczanska, E.S. and Mintenbeck, K. and Alegr'ia, A. and Craig, M. and Langsdorf, S. and Loschke, S. and Moller, V. and Okem, A. and Rama B., "Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, " Tech. Rep., 2022.
R. J. Standish, R. J. Hobbs, M. M. Mayfield, B. T. Bestelmeyer, K. N. Suding, L. L. Battaglia, V. Eviner, C. V. Hawkes, V. M. Temperton, V. A. Cramer, J. A. Harris, J. L. Funk, and P. A. Thomas, "Resilience in ecology: Abstraction, distraction, or where the action is?" Biological Conservation, vol. 177, pp. 43-51, Sep. 2014.
I. M. Cot'e and E. S. Darling, "Rethinking Ecosystem Resilience in the Face of Climate Change, " PLOS Biology, vol. 8, no. 7, p. e1000438, Jul. 2010.
I. D. Thompson, Ed., Forest Resilience, Biodiversity, and Climate Change: A Synthesis of the Biodiversity/Resiliende/Stability Relationship in Forest Ecosystems, ser. CBD Technical Series. Montreal: Secretariat of the Convention on Biological Diversity, 2009, no. 43.
C. Fetting, "The European Green Deal, " ESDN Report, Dec. 2020.
N. Guelfi, "A formal framework for dependability and resilience from a software engineering perspective, " Open Computer Science, vol. 1, no. 3, Jan. 2011.
W. L. Geary, M. Bode, T. S. Doherty, E. A. Fulton, D. G. Nimmo, A. I. T. Tulloch, V. J. D. Tulloch, and E. G. Ritchie, "A guide to ecosystem models and their environmental applications, " Nature Ecology & Evolution, vol. 4, no. 11, pp. 1459-1471, Sep. 2020.
R. Lardy, G. Bellocchi, B. Bachelet, and D. Hill, Climate Change Vulnerability Assessment with Constrained Design of Experiments, Using a Model Driven Engineering Approach., Jan. 2011.
J. Kienzle, G. Mussbacher, B. Combemale, L. Bastin, N. Bencomo, J.-M. Bruel, C. Becker, S. Betz, R. Chitchyan, B. H. C. Cheng, S. Klingert, R. F. Paige, B. Penzenstadler, N. Seyff, E. Syriani, and C. C. Venters, "Toward model-driven sustainability evaluation, " Communications of the ACM, vol. 63, no. 3, pp. 80-91, Feb. 2020.
N. Schuwirth, F. Borgwardt, S. Domisch, M. Friedrichs, M. Kattwinkel, D. Kneis, M. Kuemmerlen, S. D. Langhans, J. Mart'inez-L'opez, and P. Vermeiren, "How to make ecological models useful for environmental management, " Ecological Modelling, vol. 411, p. 108784, Nov. 2019.
S. Saravi, R. Kalawsky, D. Joannou, M. Rivas Casado, G. Fu, and F. Meng, "Use of Artificial Intelligence to Improve Resilience and Preparedness Against Adverse Flood Events, " Water, vol. 11, no. 5, p. 973, May 2019.
C. E. Buckland, R. M. Bailey, and D. S. G. Thomas, "Using artificial neural networks to predict future dryland responses to human and climate disturbances, " Scientific Reports, vol. 9, no. 1, p. 3855, Mar. 2019.
J. Jung, M. Maeda, A. Chang, M. Bhandari, A. Ashapure, and J. Landivar-Bowles, "The potential of remote sensing and artificial intelligence as tools to improve the resilience of agriculture production systems, " Current Opinion in Biotechnology, vol. 70, pp. 15-22, Aug. 2021.
Gustau Camps-Valls, "Deep Learning for the Earth Sciences, " p. 435, 2021.
D. Rolnick, P. L. Donti, L. H. Kaack, K. Kochanski, A. Lacoste, K. Sankaran, A. S. Ross, N. Milojevic-Dupont, N. Jaques, A. Waldman-Brown, A. Luccioni, T. Maharaj, E. D. Sherwin, S. K. Mukkavilli, K. P. Kording, C. Gomes, A. Y. Ng, D. Hassabis, J. C. Platt, F. Creutzig, J. Chayes, and Y. Bengio, "Tackling Climate Change with Machine Learning, " Nov. 2019.
C. Huntingford, E. S. Jeffers, M. B. Bonsall, H. M. Christensen, T. Lees, and H. Yang, "Machine learning and artificial intelligence to aid climate change research and preparedness, " Environmental Research Letters, vol. 14, no. 12, p. 124007, Nov. 2019.
S. L. Pimm, "The complexity and stability of ecosystems, " Nature, vol. 307, no. 5949, pp. 321-326, Jan. 1984.
R. M. May, Stability and Complexity in Model Ecosystems. Princeton University Press, Dec. 2019.
B. deYoung, M. Heath, F. Werner, F. Chai, B. Megrey, and P. Monfray, "Challenges of Modeling Ocean Basin Ecosystems, " Science, vol. 304, no. 5676, pp. 1463-1466, Jun. 2004.
B. M. S. Arani, S. R. Carpenter, L. Lahti, E. H. van Nes, and M. Scheffer, "Exit time as a measure of ecological resilience, " Science (New York, N.Y.), vol. 372, no. 6547, p. eaay4895, Jun. 2021.
X. Cui, C. Gibbes, J. Southworth, and P. Waylen, "Using Remote Sensing to Quantify Vegetation Change and Ecological Resilience in a Semi-Arid System, " Land, vol. 2, no. 2, pp. 108-130, Jun. 2013.
Z. Li, D. Xu, and X. Guo, "Remote Sensing of Ecosystem Health: Opportunities, Challenges, and Future Perspectives, " Sensors, vol. 14, no. 11, pp. 21 117-21 139, Nov. 2014.
Z. A. Wang, H. Moustahfid, A. V. Mueller, A. P. M. Michel, M. Mowlem, B. T. Glazer, T. A. Mooney, W. Michaels, J. S. McQuillan, J. C. Robidart, J. Churchill, M. Sourisseau, A. Daniel, A. Schaap, S. Monk, K. Friedman, and P. Brehmer, "Advancing Observation of Ocean Biogeochemistry, Biology, and Ecosystems With Cost-Effective in situ Sensing Technologies, " Frontiers in Marine Science, vol. 6, 2019.
S. Salcedo-Sanz, P. Ghamisi, M. Piles, M. Werner, L. Cuadra, A. Moreno-Mart'inez, E. Izquierdo-Verdiguier, J. Muñoz-Mar'i, A. Mosavi, and G. Camps-Valls, "Machine learning information fusion in Earth observation: A comprehensive review of methods, applications and data sources, " Information Fusion, vol. 63, pp. 256-272, Nov. 2020.
D. Schmidt, "Guest Editor's Introduction: Model-Driven Engineering, " Computer, vol. 39, no. 2, pp. 25-31, Feb. 2006.
S. Cook, C. Bock, P. Rivett, T. Rutt, E. Seidewitz, B. Selic, and D. Tolbert, "Unified modeling language (UML) version 2.5.1, " Object Management Group (OMG), Standard, Dec. 2017.
D. Jackson, "Alloy: A lightweight object modelling notation, " ACM Transactions on Software Engineering and Methodology, vol. 11, no. 2, pp. 256-290, Apr. 2002.
A. H. Victoria and G. Maragatham, "Automatic tuning of hyperparameters using Bayesian optimization, " Evolving Systems, vol. 12, no. 1, pp. 217-223, Mar. 2021.
H. Li, P. Chaudhari, H. Yang, M. Lam, A. Ravichandran, R. Bhotika, and S. Soatto, "Rethinking the Hyperparameters for Fine-tuning, " Feb. 2020.
H. J. P. Weerts, A. C. Mueller, and J. Vanschoren, "Importance of Tuning Hyperparameters of Machine Learning Algorithms, " Jul. 2020.
UN DESA, "The Sustainable Development Goals Report 2023: Special Edition, " United Nations, New York, USA, Sustainable Development, Jul. 2023.
D. Rocchini, N. Salvatori, C. Beierkuhnlein, A. Chiarucci, F. de Boissieu, M. Forster, C. X. Garzon-Lopez, T. W. Gillespie, H. C. Hauffe, K. S. He, B. Kleinschmit, J. Lenoir, M. Malavasi, V. Moudr'y, H. Nagendra, D. Payne, P. ?S'imov'a, M. Torresani, M. Wegmann, and J.-B. F'eret, "From local spectral species to global spectral communities: A benchmark for ecosystem diversity estimate by remote sensing, " Ecological Informatics, vol. 61, p. 101195, Mar. 2021.
D. Rocchini, N. Balkenhol, G. A. Carter, G. M. Foody, T. W. Gillespie, K. S. He, S. Kark, N. Levin, K. Lucas, M. Luoto, H. Nagendra, J. Oldeland, C. Ricotta, J. Southworth, and M. Neteler, "Remotely sensed spectral heterogeneity as a proxy of species diversity: Recent advances and open challenges, " Ecological Informatics, vol. 5, no. 5, pp. 318-329, Sep. 2010.
G. Sumbul, M. Charfuelan, B. Demir, and V. Markl, "Bigearthnet: A Large-Scale Benchmark Archive for Remote Sensing Image Understanding, " in IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama, Japan: IEEE, Jul. 2019, pp. 5901-5904.
G. Cheng, X. Xie, J. Han, L. Guo, and G.-S. Xia, "Remote Sensing Image Scene Classification Meets Deep Learning: Challenges, Methods, Benchmarks, and Opportunities, " IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 3735-3756, 2020.
T. Sousa, B. Ries, and N. Guelfi, "Formal Verification of Ecosystem Restoration Requirements Using UML and Alloy, " 2023.
T. L. H. Treuer, J. J. Choi, D. H. Janzen, W. Hallwachs, D. Per'ez-Aviles, A. P. Dobson, J. S. Powers, L. C. Shanks, L. K. Werden, and D. S. Wilcove, "Low-cost agricultural waste accelerates tropical forest regeneration: Regenerating tropical forest with orange waste, " Restoration Ecology, vol. 26, no. 2, pp. 275-283, Mar. 2018.