[en] Melanomas frequently metastasize to the brain. Despite recent progress in the treatment of
melanoma brain metastasis, therapy resistance and relapse of disease remain unsolved
challenges. CCT196969 is a SRC family kinase (SFK) and Raf proto-oncogene, serine/thre onine kinase (RAF) inhibitor with documented effects in primary melanoma cell lines in vitro
and in vivo. Using in vitro cell line assays, we studied the effects of CCT196969 in multiple
melanoma brain metastasis cell lines. The drug effectively inhibited proliferation, migration,
and survival in all examined cell lines, with viability IC50 doses in the range of 0.18–2.6 μM.
Western blot analysis showed decreased expression of p-ERK, p-MEK, p-STAT3 and
STAT3 upon CCT196969 treatment. Furthermore, CCT196969 inhibited viability in two B Raf Proto-Oncogene (BRAF) inhibitor resistant metastatic melanoma cell lines. Further in
vivo studies should be performed to determine the treatment potential of CCT196969 in
patients with treatment-naïve and resistant melanoma brain metastasis.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Reigstad, Agathe; University of Bergen - UiB > Department of Biomedicine
Herdlevær, Christina Frantzen; University of Bergen - UiB > Department of Biomedicine
Rigg, Emma; University of Bergen - UiB > Department of Biomedicine
Hoang, Tuyen; University of Bergen - UiB > Department of Biomedicine
Bjørnstad, Ole Vidhammer; University of Bergen - UiB > Department of Biomedicine
Aasen, Synnøve Nymark; University og Bergen - UiB > Department of Biomedicine ; Western Norway University of Applied Sciences > Faculty of Health and Social Sciences
PREIS, Jasmin Renate ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
HAAN, Claude ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Life Sciences and Medicine (DLSM)
Sundstrøm, Terje; HaukelHaukeland University Hospital > Department of Neurosurgery ; University of Bergen - UiB > Department of Clinical Medicine
Thorsen, Frits; University of Bergen - UiB > Department of Biomedicine ; University of Bergen - UiB > Department of Biomedicine > Molecular Imaging Center
External co-authors :
yes
Language :
English
Title :
CCT196969 effectively inhibits growth and survival of melanoma brain metastasis cells
Publication date :
09 September 2022
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, San Franscisco, United States - California
Ali Z., Yousaf N., and Larkin J., Melanoma epidemiology, biology and prognosis. EJC Suppl, 2013. 11 (2): p. 81-91.
Chason J.L., Walker F.B., and Landers J.W., Metastatic carcinoma in the central nervous system and dorsal root ganglia. A prospective autopsy study. Cancer, 1963. 16: p. 781-7.
Davies M.A., et al., Prognostic factors for survival in melanoma patients with brain metastases. Cancer, 2011. 117(8): p. 1687-96.
Budman D.R., Camacho E., and Wittes R.E., The current causes of death in patients with malignant melanoma. Eur J Cancer, 1978. 14(4): p. 327-30.
Lagerwaard F.J., et al., Identification of prognostic factors in patients with brain metastases: a review of 1292 patients. Int J Radiat Oncol Biol Phys, 1999. 43(4): p. 795-803.
Fife K.M., et al., Determinants of outcome in melanoma patients with cerebral metastases. J Clin Oncol, 2004. 22(7): p. 1293-300. https://doi.org/10.1200/JCO.2004.08.140 PMID: 15051777
Zhang D., et al., Incidence and prognosis of brain metastases in cutaneous melanoma patients: a population-based study. Melanoma Res, 2019. 29(1): p. 77-84.
Leonardi G.C., et al., Cutaneous melanoma: From pathogenesis to therapy (Review). Int J Oncol, 2018. 52(4): p. 1071-1080. https://doi.org/10.3892/ijo.2018.4287 PMID: 29532857
Cancer Genome Atlas N., Genomic Classification of Cutaneous Melanoma. Cell, 2015. 161(7): p. 1681-96.
Davies H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-54.
Davies M.A., et al., Dabrafenib plus trametinib in patients with BRAF(V600)-mutant melanoma brain metastases (COMBI-MB): a multicentre, multicohort, open-label, phase 2 trial. Lancet Oncol, 2017. 18 (7): p. 863-873. https://doi.org/10.1016/S1470-2045(17)30429-1 PMID: 28592387
Heidorn S.J., et al., Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell, 2010. 140(2): p. 209-21.
Kaplan F.M., et al., Hyperactivation of MEK-ERK1/2 signaling and resistance to apoptosis induced by the oncogenic B-RAF inhibitor, PLX4720, in mutant N-RAS melanoma cells. Oncogene, 2011. 30(3): p. 366-71.
Manzano J.L., et al., Resistant mechanisms to BRAF inhibitors in melanoma. Ann Transl Med, 2016. 4 (12): p. 237. https://doi.org/10.21037/atm.2016.06.07 PMID: 27429963
Girotti M.R., et al., Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov, 2013. 3(2): p. 158-67.
Shi H., et al., Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy. Cancer Discov, 2014. 4(1): p. 80-93.
Wheeler S.E., et al., Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation. Oncogene, 2010. 29(37): p. 5135-45.
Irby R.B. and Yeatman T.J., Role of Src expression and activation in human cancer. Oncogene, 2000. 19(49): p. 5636-42.
Vergani E., et al., Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032. Neoplasia, 2011. 13(12): p. 1132-42.
Krayem M., et al., Kinome Profiling to Predict Sensitivity to MAPK Inhibition in Melanoma and to Provide New Insights into Intrinsic and Acquired Mechanism of Resistance. Cancers (Basel), 2020. 12(2).
Wagle N., et al., Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol, 2011. 29(22): p. 3085-96. https://doi.org/10.1200/JCO.2010.33.2312 PMID: 21383288
McArthur G.A., et al., Vemurafenib in metastatic melanoma patients with brain metastases: an openlabel, single-arm, phase 2, multicentre study. Ann Oncol, 2017. 28(3): p. 634-641. https://doi.org/10. 1093/annonc/mdw641 PMID: 27993793
Long G.V., et al., Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet Oncol, 2012. 13(11): p. 1087-95. https://doi.org/10.1016/S1470-2045(12)70431-X PMID: 23051966
Girotti M.R., et al., Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell, 2015. 27(1): p. 85-96.
Wang J., et al., A novel brain metastases model developed in immunodeficient rats closely mimics the growth of metastatic brain tumours in patients. Neuropathol Appl Neurobiol, 2011. 37(2): p. 189-205.
Aasen S.N., et al., Effective Treatment of Metastatic Melanoma by Combining MAPK and PI3K Signaling Pathway Inhibitors. Int J Mol Sci, 2019. 20(17). https://doi.org/10.3390/ijms20174235 PMID: 31470659
Brastianos P.K., et al., Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets. Cancer Discov, 2015. 5(11): p. 1164-1177. https://doi.org/10.1158/ 2159-8290.CD-15-0369 PMID: 26410082
Xie T.X., et al., Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res, 2006. 66(6): p. 3188-96.
Niessner H., et al., Targeting hyperactivation of the AKT survival pathway to overcome therapy resistance of melanoma brain metastases. Cancer Med, 2013. 2(1): p. 76-85.
Halaban R., et al., A novel anti-melanoma SRC-family kinase inhibitor. Oncotarget, 2019. 10(23): p. 2237-2251. https://doi.org/10.18632/oncotarget.26787 PMID: 31040916
Gampa G., et al., Brain Distribution and Active Efflux of Three panRAF Inhibitors: Considerations in the Treatment of Melanoma Brain Metastases. J Pharmacol Exp Ther, 2019. 368(3): p. 446-461.
Daphu I., et al., In vitro treatment of melanoma brain metastasis by simultaneously targeting the MAPK and PI3K signaling pathways. Int J Mol Sci, 2014. 15(5): p. 8773-94. https://doi.org/10.3390/ ijms15058773 PMID: 24840574
Duval K., et al., Modeling Physiological Events in 2D vs. 3D Cell Culture. Physiology (Bethesda), 2017. 32(4): p. 266-277.
Sundstrom T., et al., Inhibition of mitochondrial respiration prevents BRAF-mutant melanoma brain metastasis. Acta Neuropathol Commun, 2019. 7(1): p. 55.
Arozarena I. and Wellbrock C., Targeting invasive properties of melanoma cells. FEBS J, 2017. 284 (14): p. 2148-2162. https://doi.org/10.1111/febs.14040 PMID: 28196297
de la Monte S.M., Moore G.W., and Hutchins G.M., Patterned distribution of metastases from malignant melanoma in humans. Cancer Res, 1983. 43(7): p. 3427-33.
Eustace A.J., et al., Preclinical evaluation of dasatinib, a potent Src kinase inhibitor, in melanoma cell lines. J Transl Med, 2008. 6: p. 53.
Ferguson J., et al., Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion. Oncogene, 2013. 32(1): p. 86-96.
Buettner R., et al., Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells. Mol Cancer Res, 2008. 6(11): p. 1766-74.
Gangadhar T.C., et al., Phase II study of the Src kinase inhibitor saracatinib (AZD0530) in metastatic melanoma. Invest New Drugs, 2013. 31(3): p. 769-73. https://doi.org/10.1007/s10637-012-9897-4 PMID: 23151808
Cordaro F.G., et al., Phenotype characterization of human melanoma cells resistant to dabrafenib. Oncol Rep, 2017. 38(5): p. 2741-2751.
Ghavami S., et al., Apoptosis and cancer: mutations within caspase genes. J Med Genet, 2009. 46(8): p. 497-510.
Chen Z. and Han Z.C., STAT3: a critical transcription activator in angiogenesis. Med Res Rev, 2008. 28(2): p. 185-200. https://doi.org/10.1002/med.20101 PMID: 17457812
Degirmenci U., Wang M., and Hu J., Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells, 2020. 9(1).
Zhao K., et al., Dual Inhibition of MAPK and JAK2/STAT3 Pathways Is Critical for the Treatment of BRAF Mutant Melanoma. Mol Ther Oncolytics, 2020. 18: p. 100-108.
Chen G., et al., Molecular profiling of patient-matched brain and extracranial melanoma metastases implicates the PI3K pathway as a therapeutic target. Clin Cancer Res, 2014. 20(21): p. 5537-46.