Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
What Really Drives the Spread of COVID-19 Tweets: A Revisit from Perspective of Content
CHUAI, Yuwei; Chang, Yutian; Zhao, Jichang
2022In 2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA)
Peer reviewed
 

Documents


Texte intégral
2022168048.pdf
Postprint Auteur (272.56 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
COVID-19 content; digital communication; emotions; politicization; pandemic management; social media
Résumé :
[en] COVID-19 content spreads wildly on social media and produces significant effects in both causing social panic and assisting pandemic management. However, what really enhances the diffusion of pandemic-related content during COVID-19, particularly from the perspective of the content itself, remains unexplored. Using large-scale COVID-19 tweets posted on Twitter, this paper empirically examines the effects of the four key characteristics, namely emotions, topics, hashtags, and mentions, on information spread in the pandemic. The empirical results show that most negative emotions have positive effects on retweeting. Nevertheless, the positive effect of trust on retweeting is unexpectedly the strongest. And the positive effects of the political topics and mentioning politicians further indicate that people are sensitive to the politicization of information during the pandemic. The strongest anger intensity in the political topic also needs to be noticed. The results complement the extant understanding of information diffusion during COVID-19 and provide insights for the governments to understand the psychology and behavior of large population during disasters like global pandemics.
Disciplines :
Ingénierie, informatique & technologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
CHUAI, Yuwei ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > IRiSC
Chang, Yutian;  Beihang University > School of Economics and Management
Zhao, Jichang;  Beihang University > School of Economics and Management
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
What Really Drives the Spread of COVID-19 Tweets: A Revisit from Perspective of Content
Date de publication/diffusion :
13 octobre 2022
Nom de la manifestation :
2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA)
Date de la manifestation :
from 13-10-2022 to 16-10-2022
Manifestation à portée :
International
Titre du périodique :
2022 IEEE 9th International Conference on Data Science and Advanced Analytics (DSAA)
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Organisme subsidiant :
NSFC
Disponible sur ORBilu :
depuis le 13 février 2023

Statistiques


Nombre de vues
140 (dont 10 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
4
citations Scopus®
sans auto-citations
1
citations OpenAlex
 
4
citations WoS
 
4

Bibliographie


Publications similaires



Contacter ORBilu