DNA methylation; accelerated aging; internalizing behaviors; children; ALSPAC
Résumé :
[en] Background: Internalizing behaviors are an indicator of children’s psychological and emotional development, predicting future mental disorders. Recent studies have identified associations between DNA methylation (DNAm) and internalizing behaviors. This prospective study aimed at exploring the associations between pace of biological aging and the developmental trajectories of internalizing behaviors.
Methods: Participants were children from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (N=974). Measures of DNA methylation were collected at birth, age 7 and ages 15-17. The pace of aging was estimated using the DunedinPoAm algorithm (PoAm). Internalizing behaviors reported by caregivers between ages 4 and 16 using the Strengths and Difficulties Questionnaire. To explore heterogeneity in the association between PoAm and internalizing behaviors we use Poisson quantile regression in cross-section heterogeneity and longitudinal latent class analysis over the childhood and adolescence.
Results: Internalizing behavior trajectories were identified: low-risk, childhood limited, late onset and early onset (persistent). Accelerated aging at birth was negatively associated with internalizing behaviors in early childhood but positively correlated during adolescence. Higher PoAm at birth increased chance of low-risk profile, while decreasing likelihood of childhood limited trajectory. PoAm at age 15 was negatively associated with childhood limited profile and positively linked to late onset trajectories. Associations were larger at higher values of internalizing
symptoms.
Conclusions: The heterogeneity in the association between biological age acceleration and internalizing behaviors suggests a complex dynamic relationship, particularly in children with high or increased risk of adverse mental health outcomes.
Disciplines :
Sciences sociales & comportementales, psychologie: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Caro, Juan Carlos
Holuka, Cyrielle; Luxembourg Institute of Health - LIH
Menta, Giorgia; Luxembourg Institute of Socio-Economic Research - LISER
TURNER, Jonathan ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC)
Vögele, Claus ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
d'Ambrosio, Conchita ; University of Luxembourg > Faculty of Humanities, Education and Social Sciences (FHSE) > Department of Behavioural and Cognitive Sciences (DBCS)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Children’s internalizing behavior development is heterogeneously associated with the pace of epigenetic aging
Date de publication/diffusion :
2023
Titre du périodique :
Biological Psychology
ISSN :
0301-0511
eISSN :
1873-6246
Maison d'édition :
Elsevier, Amsterdam, Pays-Bas
Volume/Tome :
176
Pagination :
108463
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR13650569 - Age Acceleration And The Life Course, 2019 (01/09/2020-31/08/2023) - Conchita D'ambrosio
Alfano, R., Guida, F., Galobardes, B., Chadeau-Hyam, M., Delpierre, C., Ghantous, A., Henderson, J., Herceg, Z., Jain, P., Nawrot, T.S., Relton, C., Vineis, P., Castagné, R., Plusquin, M., Socioeconomic position during pregnancy and DNA methylation signatures at three stages across early life: epigenome-wide association studies in the ALSPAC birth cohort. International Journal of Epidemiology 48 (2019), 30–44, 10.1093/ije/dyy259.
Althoff, R.R., Verhulst, F.C., Rettew, D.C., Hudziak, J.J., van der Ende, J., Adult outcomes of childhood dysregulation: A 14-year follow-up study. Journal of the American Academy of Child & Adolescent Psychiatry 49 (2010), 1105–1116.e1, 10.1016/j.jaac.2010.08.006.
Asparouhov, T., Muthén, B., Auxiliary variables in mixture modeling: three-step approaches using Mplus. Structural Equation Modeling A Multidisciplinary Journal 21 (2014), 329–341, 10.1080/10705511.2014.915181.
Baranne, M.L., Falissard, B., Global burden of mental disorders among children aged 5-14 years. Child Adolescent Psychiatry Mental Health, 12, 2018, 19, 10.1186/s13034-018-0225-4.
Barker, E.D., Cecil, C.A.M., Walton, E., Houtepen, L.C., O'Connor, T.G., Danese, A., Jaffee, S.R., Jensen, S.K.G., Pariante, C., McArdle, W., Gaunt, T.R., Relton, C.L., Roberts, S., Inflammation-related epigenetic risk and child and adolescent mental health: A prospective study from pregnancy to middle adolescence. Development and Psychopathology 30 (2018), 1145–1156, 10.1017/S0954579418000330.
Barker, E.D., Maughan, B., Differentiating early-onset persistent versus childhood-limited conduct problem youth. American Journal of 166 (2009), 900–908, 10.1176/appi.ajp.2009.08121770.
Barker, E.D., Walton, E., Cecil, C.A.M., Annual research review: DNA methylation as a mediator in the association between risk exposure and child and adolescent psychopathology. Journal of Child Psychology and Psychiatry 59 (2018), 303–322, 10.1111/jcpp.12782.
Belsky, D.W., Caspi, A., Arseneault, L., Baccarelli, A., Corcoran, D.L., Gao, X., Hannon, E., Harrington, H.L., Rasmussen, L.J., Houts, R., Huffman, K., Kraus, W.E., Kwon, D., Mill, J., Pieper, C.F., Prinz, J.A., Poulton, R., Schwartz, J., Sugden, K., Vokonas, P., Williams, B.S., Moffitt, T.E., Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife, 9, 2020, e54870, 10.7554/eLife.54870.
Belsky, D.W., Moffitt, T.E., Cohen, A.A., Corcoran, D.L., Levine, M.E., Prinz, J.A., Schaefer, J., Sugden, K., Williams, B., Poulton, R., Caspi, A., Eleven Telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: Do they measure the same thing?. American Journal of Epidemiology 187 (2018), 1220–1230, 10.1093/aje/kwx346.
Blanken, L.M.E., White, T., Mous, S.E., Basten, M., Muetzel, R.L., Jaddoe, V.W.V., Wals, M., van der Ende, J., Verhulst, F.C., Tiemeier, H., Cognitive functioning in children with internalising, externalising and dysregulation problems: a population-based study. Eur Child Adolescent Psychiatry 26 (2017), 445–456, 10.1007/s00787-016-0903-9.
Brody, G.H., Yu, T., Chen, E., Beach, S.R.H., Miller, G.E., Family-centered prevention ameliorates the longitudinal association between risky family processes and epigenetic aging. Journal of Child Psychology and Psychiatry 57 (2016), 566–574, 10.1111/jcpp.12495.
Cecil, C.A.M., Walton, E., Jaffee, S.R., O'Connor, T., Maughan, B., Relton, C.L., Smith, R.G., McArdle, W., Gaunt, T.R., Ouellet-Morin, I., Barker, E.D., Neonatal DNA methylation and early-onset conduct problems: A genome-wide, prospective study. Development and Psychopathology 30 (2017), 383–397, 10.1017/s095457941700092x.
Czamara, D., Tissink, E., Tuhkanen, J., Martins, J., Awaloff, Y., Drake, A.J., Khulan, B., Palotie, A., Winter, S.M., Nemeroff, C.B., Craighead, W.E., Dunlop, B.W., Mayberg, H.S., Kinkead, B., Mathew, S.J., Iosifescu, D.V., Neylan, T.C., Heim, C.M., Lahti, J., Eriksson, J.G., Räikkönen, K., Ressler, K.J., Provençal, N., Binder, E.B., Combined effects of genotype and childhood adversity shape variability of DNA methylation across age. Translational Psychiatry 11 (2021), 1–11, 10.1038/s41398-020-01147-z.
Demange, P.A., Malanchini, M., Mallard, T.T., Biroli, P., Cox, S.R., Grotzinger, A.D., Tucker-Drob, E.M., Abdellaoui, A., Arseneault, L., van Bergen, E., Boomsma, D.I., Caspi, A., Corcoran, D.L., Domingue, B.W., Harris, K.M., Ip, H.F., Mitchell, C., Moffitt, T.E., Poulton, R., Prinz, J.A., Sugden, K., Wertz, J., Williams, B.S., de Zeeuw, E.L., Belsky, D.W., Harden, K.P., Nivard, M.G., Investigating the genetic architecture of noncognitive skills using GWAS-by-subtraction. Nature Genetics 53 (2021), 35–44, 10.1038/s41588-020-00754-2.
Durbeej, N., Sörman, K., Norén Selinus, E., Lundström, S., Lichtenstein, P., Hellner, C., Halldner, L., Trends in childhood and adolescent internalizing symptoms: Results from Swedish population based twin cohorts. BMC Psychology, 7, 2019, 50, 10.1186/s40359-019-0326-8.
Ellis, R., Fernandes, A., Simmons, J.G., Mundy, L., Patton, G., Allen, N.B., Whittle, S., Relationships between adrenarcheal hormones, hippocampal volumes and depressive symptoms in children. Psychoneuroendocrinology 104 (2019), 55–63, 10.1016/j.psyneuen.2019.02.016.
Essex, M.J., Thomas Boyce, W., Hertzman, C., Lam, L.L., Armstrong, J.M., Neumann, S.M.A., Kobor, M.S., Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence: epigenetic vestiges of early adversity. Child Development 84 (2013), 58–75, 10.1111/j.1467-8624.2011.01641.x.
Fraser, A., Macdonald-Wallis, C., Tilling, K., Boyd, A., Golding, J., Davey Smith, G., Henderson, J., Macleod, J., Molloy, L., Ness, A., Ring, S., Nelson, S.M., Lawlor, D.A., Cohort profile: The Avon longitudinal study of parents and children: ALSPAC mothers cohort. International Journal of Epidemiology 42 (2013), 97–110, 10.1093/ije/dys066.
Goodman, A., Lamping, D.L., Ploubidis, G.B., When to use broader internalising and externalising subscales instead of the hypothesised five subscales on the Strengths and Difficulties Questionnaire (SDQ): Data from British parents, teachers and children. Journal of Abnormal Child Psychology 38 (2010), 1179–1191, 10.1007/s10802-010-9434-x.
Goodman, R., Psychometric properties of the strengths and difficulties questionnaire. Journal of the American Academy of Child & Adolescent Psychiatry 40 (2001), 1337–1345, 10.1097/00004583-200111000-00015.
Goodman, R., The strengths and difficulties questionnaire: A research note. Journal of Child Psychology and Psychiatry 38 (1997), 581–586, 10.1111/j.1469-7610.1997.tb01545.x.
Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., Klotzle, B., Bibikova, M., Fan, J.-B., Gao, Y., Deconde, R., Chen, M., Rajapakse, I., Friend, S., Ideker, T., Zhang, K., Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell 49 (2013), 359–367, 10.1016/j.molcel.2012.10.016.
Hoare, J., Stein, D.J., Heany, S.J., Fouche, J.-P., Phillips, N., Er, S., Myer, L., Zar, H.J., Horvath, S., Levine, A.J., Accelerated epigenetic aging in adolescents from low-income households is associated with altered development of brain structures. Metabolic Brain Disease 35 (2020), 1287–1298, 10.1007/s11011-020-00589-0.
Horvath, S., DNA methylation age of human tissues and cell types. Genome Biology, 14, 2013, R115, 10.1186/gb-2013-14-10-r115.
Horvath, S., Raj, K., DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics 19 (2018), 371–384, 10.1038/s41576-018-0004-3.
Khulan, B., Manning, J.R., Dunbar, D.R., Seckl, J.R., Raikkonen, K., Eriksson, J.G., Drake, A.J., Epigenomic profiling of men exposed to early-life stress reveals DNA methylation differences in association with current mental state. Translational Psychiatry, 4, 2014, e448–e448, 10.1038/tp.2014.94.
Kieling, C., Baker-Henningham, H., Belfer, M., Conti, G., Ertem, I., Omigbodun, O., Rohde, L.A., Srinath, S., Ulkuer, N., Rahman, A., Child and adolescent mental health worldwide: Evidence for action. The Lancet 378 (2011), 1515–1525, 10.1016/S0140-6736(11)60827-1.
King, S.M., Iacono, W.G., McGue, M., Childhood externalizing and internalizing psychopathology in the prediction of early substance use. Addiction 99 (2004), 1548–1559, 10.1111/j.1360-0443.2004.00893.x.
Knight, A.K., Craig, J.M., Theda, C., Bækvad-Hansen, M., Bybjerg-Grauholm, J., Hansen, C.S., Hollegaard, M.V., Hougaard, D.M., Mortensen, P.B., Weinsheimer, S.M., Werge, T.M., Brennan, P.A., Cubells, J.F., Newport, D.J., Stowe, Z.N., Cheong, J.L.Y., Dalach, P., Doyle, L.W., Loke, Y.J., Baccarelli, A.A., Just, A.C., Wright, R.O., Téllez-Rojo, M.M., Svensson, K., Trevisi, L., Kennedy, E.M., Binder, E.B., Iurato, S., Czamara, D., Räikkönen, K., Lahti, J.M.T., Pesonen, A.-K., Kajantie, E., Villa, P.M., Laivuori, H., Hämäläinen, E., Park, H.J., Bailey, L.B., Parets, S.E., Kilaru, V., Menon, R., Horvath, S., Bush, N.R., LeWinn, K.Z., Tylavsky, F.A., Conneely, K.N., Smith, A.K., An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biology, 17, 2016, 206, 10.1186/s13059-016-1068-z.
Levine, M.E., Lu, A.T., Quach, A., Chen, B.H., Assimes, T.L., Bandinelli, S., Hou, L., Baccarelli, A.A., Stewart, J.D., Li, Y., Whitsel, E.A., Wilson, J.G., Reiner, A.P., Aviv, A., Lohman, K., Liu, Y., Ferrucci, L., Horvath, S., An epigenetic biomarker of aging for lifespan and healthspan. Aging 10 (2018), 573–591, 10.18632/aging.101414.
Liu, J., Chen, X., Lewis, G., Childhood internalizing behaviour: Analysis and implications. Journal of Psychiatric and Mental Health Nursing 18 (2011), 884–894, 10.1111/j.1365-2850.2011.01743.x.
Machado, J.A.F., Silva, J.M.C.S., Quantiles for counts. Journal of the American Statistical Association 100 (2005), 1226–1237, 10.1198/016214505000000330.
Marcoulides, G.A., Schumacker, R.E., New Developments and Techniques in Structural Equation Modeling. 2001, Psychology Press.
Marioni, R.E., Suderman, M., Chen, B.H., Horvath, S., Bandinelli, S., Morris, T., Beck, S., Ferrucci, L., Pedersen, N.L., Relton, C.L., Deary, I.J., Hägg, S., Tracking the epigenetic clock across the human life course: A meta-analysis of longitudinal cohort data. The Journals of Gerontology: Series A 74 (2019), 57–61, 10.1093/gerona/gly060.
Menta, G., Lepinteur, A., Clark, A.E., Ghislandi, S., D'Ambrosio, C., Maternal depression and child human capital: A genetic instrumental-variable approach. medRxiv, 2021, 10.1101/2021.02.11.21251547.
Miller, G.E., Yu, T., Chen, E., Brody, G.H., Self-control forecasts better psychosocial outcomes but faster epigenetic aging in low-SES youth. Proceedings of the National Academy of Sciences USA 112 (2015), 10325–10330, 10.1073/pnas.1505063112.
Parade, S.H., Huffhines, L., Daniels, T.E., Stroud, L.R., Nugent, N.R., Tyrka, A.R., A systematic review of childhood maltreatment and DNA methylation: Candidate gene and epigenome-wide approaches. Translational Psychiatry 11 (2021), 1–33, 10.1038/s41398-021-01207-y.
Pelegí-Sisó, D., de Prado, P., Ronkainen, J., Bustamante, M., González, J.R., methylclock: A Bioconductor package to estimate DNA methylation age. Bioinformatics 37 (2021), 1759–1760, 10.1093/bioinformatics/btaa825.
Pérez, R.F., Santamarina, P., Tejedor, J.R., Urdinguio, R.G., Álvarez-Pitti, J., Redon, P., Fernández, A.F., Fraga, M.F., Lurbe, E., Longitudinal genome-wide DNA methylation analysis uncovers persistent early-life DNA methylation changes. Journal of Translational Medicine, 17, 2019, 15, 10.1186/s12967-018-1751-9.
Pidsley, R., Y Wong, C.C., Volta, M., Lunnon, K., Mill, J., Schalkwyk, L.C., A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics, 14, 2013, 293, 10.1186/1471-2164-14-293.
Prince, M., Patel, V., Saxena, S., Maj, M., Maselko, J., Phillips, M.R., Rahman, A., No health without mental health. The Lancet 370 (2007), 859–877, 10.1016/S0140-6736(07)61238-0.
Raffington, L., Belsky, D.W., Kothari, M., Malanchini, M., Tucker-Drob, E.M., Harden, K.P., Socioeconomic disadvantage and the pace of biological aging in children. Pediatrics, 147, 2021, e2020024406, 10.1542/peds.2020-024406.
Relton, C.L., Gaunt, T., McArdle, W., Ho, K., Duggirala, A., Shihab, H., Woodward, G., Lyttleton, O., Evans, D.M., Reik, W., Paul, Y.-L., Ficz, G., Ozanne, S.E., Wipat, A., Flanagan, K., Lister, A., Heijmans, B.T., Ring, S.M., Davey Smith, G., Data resource profile: accessible resource for integrated epigenomic studies (ALSPAC). International Journal of Epidemiology 44 (2015), 1181–1190, 10.1093/ije/dyv072.
Richmond-Rakerd, L.S., Caspi, A., Ambler, A., d'Arbeloff, T., Bruine, M., de, Elliott, M., Harrington, H., Hogan, S., Houts, R.M., Ireland, D., Keenan, R., Knodt, A.R., Melzer, T.R., Park, S., Poulton, R., Ramrakha, S., Rasmussen, L.J.H., Sack, E., Schmidt, A.T., Sison, M.L., Wertz, J., Hariri, A.R., Moffitt, T.E., Childhood self-control forecasts the pace of midlife aging and preparedness for old age. Proceedings of the National Academy of Sciences USA, 2021, 118, 10.1073/pnas.2010211118.
Sharp, G.C., Lawlor, D.A., Richmond, R.C., Fraser, A., Simpkin, A., Suderman, M., Shihab, H.A., Lyttleton, O., McArdle, W., Ring, S.M., Gaunt, T.R., Davey Smith, G., Relton, C.L., Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: Findings from the Avon Longitudinal Study of Parents and Children. International Journal of Epidemiology 44 (2015), 1288–1304, 10.1093/ije/dyv042.
Simpkin, Andrew J., Howe, Laura D., Tilling, Kate, Gaunt, Tom R., Lyttleton, Oliver, McArdle, Wendy L., Relton, Caroline L., The epigenetic clock and physical development during childhood and adolescence: longitudinal analysis from a UK birth cohort. International Journal of Epidemiology, 2017, 10.1093/ije/dyw307.
Starnawska, A., Hansen, C.S., Sparsø, T., Mazin, W., Olsen, L., Bertalan, M., Buil, A., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Hougaard, D.M., Mortensen, P.B., Pedersen, C.B., Nyegaard, M., Werge, T., Weinsheimer, S., Differential DNA methylation at birth associated with mental disorder in individuals with 22q11.2 deletion syndrome. Translational Psychiatry, 7, 2017, e1221–e1221, 10.1038/tp.2017.181.
Suarez, A., Lahti, J., Czamara, D., Lahti-Pulkkinen, M., Knight, A.K., Girchenko, P., Hämäläinen, E., Kajantie, E., Lipsanen, J., Laivuori, H., Villa, P.M., Reynolds, R.M., Smith, A.K., Binder, E.B., Räikkönen, K., The epigenetic clock at birth: Associations with maternal antenatal depression and child psychiatric problems. Journal of the American Academy of Child & Adolescent Psychiatry 57 (2018), 321–328.e2, 10.1016/j.jaac.2018.02.011.
Sumner, J.A., Colich, N.L., Uddin, M., Armstrong, D., McLaughlin, K.A., Early experiences of threat, but not deprivation, are associated with accelerated biological aging in children and adolescents. Biological Psychiatry 85 (2019), 268–278, 10.1016/j.biopsych.2018.09.008.
Szyf, M., Bick, J., DNA methylation: A mechanism for embedding early life experiences in the genome: DNA methylation and early life experiences. Child Development 84 (2013), 49–57, 10.1111/j.1467-8624.2012.01793.x.
Tollenaar, M.S., Beijers, R., Garg, E., Nguyen, T.T.T., Lin, D.T.S., MacIsaac, J.L., Shalev, I., Kobor, M.S., Meaney, M.J., O'Donnell, K.J., de Weerth, C., Internalizing symptoms associate with the pace of epigenetic aging in childhood. Biological Psychology, 159, 2021, 108021, 10.1016/j.biopsycho.2021.108021.
Turley, P., Walters, R.K., Maghzian, O., Okbay, A., Lee, J.J., Fontana, M.A., Nguyen-Viet, T.A., Wedow, R., Zacher, M., Furlotte, N.A., Magnusson, P., Oskarsson, S., Johannesson, M., Visscher, P.M., Laibson, D., Cesarini, D., Neale, B.M., Benjamin, D.J., Multi-trait analysis of genome-wide association summary statistics using MTAG. Nature Genetics 50 (2018), 229–237, 10.1038/s41588-017-0009-4.
van der Nest, G., Lima Passos, V., Candel, M.J.J.M., van Breukelen, G.J.P., An overview of mixture modelling for latent evolutions in longitudinal data: Modelling approaches, fit statistics and software. Advances in Life Course Research, 43, 2020, 100323, 10.1016/j.alcr.2019.100323.
Wooldridge, J.M., Quasi-likelihood methods for count data. Handbook of Applied Econometrics Volume 2: Microeconomics, 1999, 321–368.
Wooldridge, J.M., Inverse probability weighted estimation for general missing data problems. Journal of Econometrics 141 (2007), 1281–1301, 10.1016/j.jeconom.2007.02.002.