Compressive model for SFRC in Annex L of Eurocode 2; Combinedcompression/flexural classification for any SFRC; Impact of the ductility and toughness enhancement of composite steel-SFRCsections on Eurocode 4
Résumé :
[en] This paper describes the model for the compressive stress-strain behaviourof steel-fibre reinforced concrete (SFRC) in Annex L of the new Eurocode 2(CEN, Eurocode 2: Design of concrete structures. Part 1-1: General rules– Rules for buildings, bridges and civil structures, prEN 1992-1-1: 2022;EC2 in short), developed within CEN TC250/SC2/WG1/TG2 – Fiber rein-forced concrete. The model uses functions obtained from correlations withan extensive database comprised of 197 well-documented SFRC compres-sive tests and 484 flexural tests. We detailedly explain the model and derive the strain values for the parabola-rectangle model for ULS of SFRC in An-nex L. In addition, we also use the model and the correlations with thedatabase to provide a link between the compressive and the flexural perfor-mance classes in EC2, which allows a complete definition of any particularSFRC. Likewise, we derive parabola-rectangle strain values for each flexuralperformance class, which is mainly advantageous for the stronger flexuralperformance classes. Finally, we give an example showing the enhancementin strength and ductility of a composite steel-SFRC section endorsed withthe new model, which results of 15% and 100%, respectively.
Centre de recherche :
Universidad de Castilla-La Mancha
Disciplines :
Ingénierie civile
Auteur, co-auteur :
Ruiz, Gonzalo; Universidad de Castilla-La Mancha UCLM
de la Rosa, Angel; UCLM
Poveda, Elisa
Zanon, Riccardo; ArcelorMittal
SCHÄFER, Markus ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Wolf, Sebastian; ArcelorMittal
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Compressive behaviour of steel-fibre reinforced concrete in Anne2605-1729x L of new Eurocode 2
Ministerio deCiencia e Innovaci ́on, Spain, through grants PID2019-110928RB-C31 and RTC-2017-6736-3, and theJunta de Comunidades de Castilla-La Mancha, Spain, throughgrant SBPLY/19/180501/000220
G. Tiberti, F. Germano, A. Mudadu, G. Plizzari, An overview of the flexural post–cracking behavior of steel fiber reinforced concrete, Structural Concrete 19 (2018) 695–718. https://doi.org/10.1002/suco.201700068 [2] N. Buratti, B. Ferracuti, M. Savoia, Concrete crack reduction in
tunnel linings by steel fibre–reinforced concretes, Construction and Building Materials 44 (2013) 249–259. https://doi.org/10.1016/j. conbuildmat.2013.02.063
M. di Prisco, G. Pizzari, L. Vandewalle, Fibre reinforced concrete: New design perspectives, Materials and Structures 42 (9) (2009) 1261–1281. https://doi.org/10.1617/s11527-009-9529-4
F. Altun, T. Haktanir, K. Ari, Effects of steel fiber addition on mechanical properties of concrete and RC beams, Construction and Building Materials 21 (2007) 654–661. https://doi.org/10.1016/j.conbuildmat.2005.12.006
B. Xu, H. Shi, Correlations among mechanical properties of steel fiber reinforced concrete, Construction and Building Materials 23 (12) (2009) 3468–3474. https://doi.org/10.1016/j.conbuildmat.2009.08.017
S. Lee, C. J.Y., F. Vecchio, Simplified diverse embedment model for steel fiber–reinforced concrete elements in tension, ACI Materials Journal 110 (4) (2013) 403–412.
A. Naaman, H. Reinhardt, High performance fiber reinforced cement composites–HPFRCC4, in: A. Naaman, H. Reinhardt (Eds.), RILEM Proceedings, PRO 30, RILEM Publications SARL, 2003.
J. Walraven, Fibre reinforced concrete: A material in development, in: Conference in Structural Applications of Fiber Reinforced Concretes, Barcelona, Spain, 2007, pp. 199–213.
Fibre reinforced concrete: Challenges and opportunities, in: J. Barros (Ed.), 8th RILEM International Symposium (BEFIB 2012), Guimaraes, Portugal, RILEM Publications SARL, 2012.
J. Deluce, F. Vecchio, Cracking behavior of steel fiber–reinforced concrete members containing conventional reinforcement, ACI Structural Journal 110 (3) (2013) 481–490.
A. Caratelli, A. Meda, Z. Rinaldi, Design according to MC2010 of a fibre– reinforced concrete tunnel in Monte Lirio, Panama, Structural Concrete 13 (3) (2012) 166–173. https://doi.org/10.1002/suco.201100034
A. De La Fuente, P. Pujadas, A. Blanco, A. Aguado, Experiences in Barcelona with the use of fibres in segmental linings, Tunnelling and Underground Space Technology 27 (1) (2012) 60–71. https://doi. org/10.1016/j.tust.2011.07.001
H. Mashimo, N. Isago, T. Kitani, T. Endou, Effect of fiber reinforced concrete on shrinkage crack of tunnel lining, Tunnelling and Underground Space Technology 21 (3–4) (2006) 382–3.
H. Mashimo, N. Isago, T. Kitani, Numerical approach for design of tunnel concrete lining considering effect of fiber reinforcements, Tunnelling and Underground Space Technology 19 (4–5) (2004) 454–5.
L. Sorelli, F. Toutlemonde, On the design of steel fibre reinforced concrete tunnel lining segments, in: XI International Conference on Fracture. Turin, Italy, 2005.
R. Gettu, B. Barragán, T. García, J. Ortiz, R. Justa, Fiber concrete tunnel lining, Concrete International 28 (8) (2006) 63–69.
G. Tiberti, G. Plizzari, J. Walraven, C. Blom, Concrete tunnel segments with combined traditional and fibre reinforcement, in: Tailor Made Concrete Structures – New Solutions for Our Society (fib Symposium). Amsterdam, The Netherlands, 2008, pp. 605–610.
R. Burgers, J. Walraven, G. Plizzari, G. Tiberti, Structural behaviour of SFRC tunnel segments during TBM operations, in: World Tunnel Congress ITA-AITES. Prague, Czech Republic, 2007, pp. 1461–1467.
T. Kasper, C. Edvardsen, G. Wittneben, D. Neumann, Lining design for the district heating tunnel in Copenhagen with steel fibre reinforced concrete segments, Tunnelling and Underground Space Technology 23 (5) (2008) 574–587.
A. Caratelli, A. Meda, Z. Rinaldi, P. Perruzza, P. Romualdi, Precast tunnel segment in fibre reinforced concrete., in: Concrete Engineering for Excellence and Efficiency (fib Symposium). Prague, Czech Republic, 2011, pp. 579–582.
A. Meda, G. Plizzari, A new design approach for SFRC slabs on grade based on fracture mechanics, ACI Structural Journal 101 (3) (2004) 298– 303. https://doi.org/10.14359/13089
B. Belletti, R. Cerioni, A. Meda, G. Plizzari, Design aspects on steel fiber reinforced concrete pavements, Journal of Materials in Civil Engineering 20 (9) (2008) 599–607. https://doi.org/10.1061/(ASCE)08991561(2008)20:9(599)
J. Michels, D. Waldmann, S. Maas, A. Zürbes, Steel fibers as only reinforcement for flat slab construction – Experimental investigation and design, Construction and Building Materials 26 (1) (2012) 145–155. https://doi.org/10.1016/J.CONBUILDMAT.2011.06.004
M. Soutsos, T. Le, A. Lampropoulos, Flexural performance of fibre reinforced concrete made with steel and synthetic fibres, Construction and Building Materials 36 (2012) 704–710. https://doi.org/10.1016/j. conbuildmat.2012.06.042
A. De La Fuente, R. Escariz, A. De Figueiredo, C. Molins, A. Aguado, A new design method for steel fibre reinforced concrete pipes, Construction and Building Materials 30 (2012) 547–555. https://doi.org/10.1016/j. conbuildmat.2011.12.015
fib Bulletins 65 & 66, Model Code 2010, Final Draft, International Federation for Structural Concrete, fib. Lausanne, Switzerland, 2012.
EN 1992-1-1, Eurocode 2: Design of Concrete Structures, European Committee for Standardization–CEN, 2020.
UNI 11039-2, Steel Fibre Reinforced Concrete–Test Method for Determination of First Crack Strength and Ductility Indexes, Italian Standardization Body– UNI, 2003.
Guide for the Design and Construction of Fiber–Reinforced Concrete Structures, Italian Standardization Body–UNI, 2003.
DAfStb TR SFRC Draft, DAfStb Technical Rule on Steel Fibre Rein
forced Concrete, Deutscher Ausschuss für Stahlbeton (DAfStb), 2012. [31] EHE 08, Instrucción de Hormigón Estructural, Ministerio de Fomento. Secretaría General Técnica, 2008.
RILEM TC 162 TDF, Test and design methods for steel fibre reinforced concrete. Design of steel fibre reinforced concrete using the σ w method: Principles and applications, Materials and Structures 35 (5) (2002) 262–278.
RILEM TC 162 TDF, Test and design methods for steel fibre reinforced concrete. σ – ϵ design method. Final recommendation, Materials and Structures 36 (8) (2003) 560–567.
RILEM TC 162 TDF, Test and design methods for steel fibre reinforced concrete. σ – ϵ design method. Recommendation, Materials and Structures 33 (2) (2000) 75–81.
EN14651, Test Method for Metallic Fibre Concrete–Measuring the Flexural Tensile Strength (Limit of Proportionally (LOP), Residual), European Committee for Standardization, Brussels, 2005.
D. Yoo, N. Banthia, Experimental and numerical analysis of the flexural response of amorphous metallic fiber reinforced concrete, Materials and Structures 50 (64) (2017).
S. Yazici, G. Inan, V. Tabak, Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC, Construction and Building Materials 21 (2007) 1250–1253. https://doi.org/10.1016/j. conbuildmat.2006.05.025
R. Swamy, P. Mangat, A theory for the flexural strength of steel fiber reinforced concrete, Cement and Concrete Research 4 (2) (1974) 313– 325.
J. Olesen, Crack propagation in fiber–reinforced concrete beams, Journal of Engineering Mechanics 127 (3) (2001) 272–280. https://doi. org/10.1061/(ASCE)0733-9399(2001)127:3(272)
M. Pajak, T. Ponikiewski, Flexural behavior of self–compacting concrete reinforced with different types of steel fibers, Construction and Building Materials 47 (2013) 397–408. https://doi.org/10.1016/j. conbuildmat.2013.05.072
D. Yoo, N. Banthia, J. Yang, Y. Yoon, Mechanical properties of corrosion–free and sustainable amorphous metallic fiber–reinforced concrete, ACI Materials Journal 113 (5) (2016) 633–643. https://doi. org/10.14359/51689108
P. Marti, T. Pfyl, V. Sigrist, T. Ulaga, Harmonized test procedures for steel fiber–reinforced concrete, ACI Materials Journal 96 (6) (1999) 676–686. https://doi.org/10.14359/794
P. Stroeven, Stereological principles of spatial modeling applied to steel fiber– reinforced concrete in tension, ACI Materials Journal 106 (3) (2009) 213–222.
J. Voo, S. Foster, Variable engagement model for fibre reinforced concrete in tension, in: Uniciv Report R–420. School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia, 2003, pp. 86–96.
T. Leutbecher, E. Fehling, Crack width control for combined reinforcement of rebars and fibers exemplified by ultra–high–performance concrete, in: Uniciv Report R–420. School of Civil and Environmental Engineering, fib Task Group 8.6, Ultra High Performance Fiber Reinforced Concrete–
UHPFRC, 2008, pp. 1–28. [46] S. Lee, J. Cho, F. Vecchio, Diverse embedment model for steel fiber– reinforced concrete in tension: Model development, ACI Materials Journal 108 (5) (2011) 516–525.
S. Lee, J. Cho, F. Vecchio, Diverse embedment model for steel fiber– reinforced concrete in tension: Model verification, ACI Materials Journal 108 (5) (2011) 526–535.
ACI 544.4R-88, Design Considerations for Steel Fiber Reinforced
Concrete, Tech. rep., American Concrete Institute (1999). [49] S. Shah, P. Stroeven, D. Dalhuisen, P. Van Stekelenburg, Complete stress– strain curves for steel fibre reinforced concrete in uniaxial tension and compression, Testing and Test Methods of Fibre Cement Composites (1978) 399– 408.
M. A. Tasdemir, A. Ilki, M. Yerlikaya, Mechanical behaviour of steel fibre reinforced concrete used in hydraulic structures, in: International Conference of Hydropower and Dams, HYDRO 2002, 2002, pp. 159– 166.
F. Bayramov, M. A. Tasdemir, A. Ilki, M. Yerlikaya, Steel fibre reinforced concrete for heavy traffic load conditions, in: 9th International Symposium on Concrete Roads, 2004, pp. 73–82.
L. Hsu, C. Hsu, Complete stress–strain behavior of high–strength concrete under compression, Magazine of Concrete Research 46 (169) (1994) 301–312. http://dx.doi.org/10.1680/macr.1994.46.169.301
A. Someh, N. Saeki, Prediction for the stress–strain curve of steel fiber reinforced concrete, in: Proceedings Japan Concrete Institute, Vol. 18, 1994, pp. 1149–1154.
M. Mansur, M. Chin, T. Wee, Stress–strain relationship of high–strength fiber concrete in compression, ASCE Journal of Materials in Civil Engineering 11 (1999) 21–29. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(21)
M. Nataraja, N. Dhang, A. Gupta, Stress–strain curves for steel– fiber reinforced concrete under compression, Cement and Concrete Composites 21 (5–6) (1999) 383–390. https://doi.org/10.1016/S09589465(99)00021-9
R. Neves, J. Fernandes de Almeida, Compressive behaviour of steel fibre reinforced concrete, Structural Concrete 6 (1) (2005) 1–8. https://doi. org/10.1680/stco.2005.6.1.1
J. Barros, J. Figueiras, Flexural behavior of SFRC: Testing and modeling, Journal of Materials in Civil Engineering 11 (4) (1999) 331–339. https://doi.org/10.1061/(asce)0899-1561(1999)11:4(331)
R. Neves, Modelling the Compressive Behaviour of Steel Fibre Reinforced Concrete, Master Thesis, Instituto Superior Técnico, Lisbon, 2000.
D. Fanella, A. Naaman, Stress-strain properties of fiber reinforced mortar in compression, ACI Journal 82 (4) (1985) 475–483.
D. Otter, A. E. Naaman, Steel fibre reinforced concrete under static and cyclic compressive loading, in: RILEM Symposium FRC 86, Devel. in Fibre Reinforced Cement and Concrete, Vol. 1, 1986.
K. Marar, O. Eren, T.Çelik, Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete, Materials Letters 47 (2001) 297–304.
J. Thomas, A. Ramaswamy, Mechanical properties of steel fiber-reinforced concrete, Journal of Materials in Civil Engineering 19 (2007) 385–392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
L. Daniel, A. Loukili, Behavior of high–strength fiber–reinforced concrete beams under cyclic loading, ACI Structural Journal 99 (3) (2002) 248– 256. https://doi.org/10.14359/11908
G. Williamson, The effect of steel fibers on the compressive strength of concrete, in: Fiber Reinforced Concrete – ACI Symposium Publication, Vol. 44, American Concrete Institute, 1974, pp. 195–207.
P. Soroushian, C. Lee, Constitutive modeling of steel fiber reinforced concrete under direct tension and compression, in: Fibre Reinforced Cements and Concretes, Recent Developments. University of Wales, College of Cardiff, School of Engineering, United Kingdom, 1989, pp. 363–375.
A. Ezeldin, P. Balaguru, Normal and high strength fiber reinforced concrete under compression, Journal of Materials in Civil Engineering 4 (4) (1992) 415–429. https://www.doi.org/10.1061/(ASCE)08991561(1992)4:4(415)
Y. Ou, M. Tsai, K. Liu, K. Chang, Compressive behavior of steel fiber reinforced concrete with a high reinforcing index, Journal of Materials in Civil Engineering 24 (2) (2011) 207–215. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000372
L. Taerwe, Influence of steel fibres on strain–softening of high–strength concrete, Materials Journal 88 (6) (1992) 54–60. http://hdl.handle. net/1854/LU-204450
B. Hughes, N. Fattuhi, Stress–strain curves for fiber reinforced concrete in compression, Cement and Concrete Research 7 (2) (1977) 173–183. https://doi.org/10.1016/0008-8846(77)90028-X
F. Bencardino, L. Rizzuti, G. Spadea, Experimental tests vs. theoretical modeling for FRC in compression, FraMCoS, 2007, pp. 159–166.
Q. Zhang, Moment and Longitudinal Resistance for Composite Beams Based on Strain Limited Design Method, Ph.D. thesis, Université du Luxembourg (2020).
M. Schäfer, Q. Zhang, M. Braun, M. Banfi, Limitations of plastic bending resistance for composite beams deviated from strain-limitation, Journal of Constructional Steel Research 180 (2021) 106562. https://doi. org/10.1016/j.jcsr.2021.106562
CEN, Eurocode 2, Design of concrete structures. Part 1-1: General rules – Rules for buildings, bridges and civil structures, prEN 1992-1-1: 2022, version of November 10, 2022, available at both UNE and CEN websites (2022).
S. Lee, J. Oh, J. Cho, Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers, Materials 8 (4) (2015) 1442–1458. https://doi.org/10.3390/ma8041442
F. Bencardino, L. Rizzuti, G. Spadea, R. Swamy, Stress-strain behavior of steel fiber-reinforced concrete in compression, Journal of Materials in Civil Engineering 20 (2008) 255–263.
P. Song, S. Hwang, Mechanical properties of high-strength steel fiberreinforced concrete, Construction and Building Materials 18 (9) (2004) 669–673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
F. Bayramov, C. Tasdemir, M. Tasdemir, Optimisation of steel fibre reinforced concretes by means of statistical response surface method, Cement and Concrete Composites 26 (2004) 665–675. https://doi. org/10.1016/S0958-9465(03)00161-6
B. Jo, Y. Shon, Y. Kim, The evaluation of elastic modulus for steel fiber reinforced concrete, Russian Journal of Nondestructive Testing 37 (2001) 152– 161. https://doi.org/10.1023/A:1016780124443
F. Aslani, S. Nejadi, Self-compacting concrete incorporating steel and polypropylene fibers: Compressive and tensile strengths, moduli of elasticity and rupture, compressive stress–strain curve, and energy dissipated under compression, Composites Part B: Engineering 53 (2013) 121–133. https://doi.org/10.1016/j.compositesb.2013.04.044
Y. Şahin, F. Köksal, The influences of matrix and steel fibre tensile strengths on the fracture energy of high-strength concrete, Construction and Building Materials 25 (4) (2011) 1801–1806. https://doi.org/10.1016/j.conbuildmat.2010.11.084
P. Cachim, J. Figueiras, P. Pereira, Fatigue behavior of fiber-reinforced concrete in compression, Cement and Concrete Composites 24 (2) (2002) 211–217.
B. Barragán, R. Gettu, M. Martín, R. Zerbino, Uniaxial tension test for steel fibre reinforced concrete — A parametric study, Cement and Concrete Composites 25 (7) (2003) 767–777. https://doi.org/10.1016/S09589465(02)00096-3
A. Medeiros, X. Zhang, G. Ruiz, R. Yu, M. de Souza Lima Velasco, Effect of the loading frequency on the compressive fatigue behavior of plain and fiber reinforced concrete, International Journal of Fatigue 70 (2015) 342–350. https://doi.org/10.1016/j.ijfatigue.2014.08.005
H. Dhonde, Y. Mo, T. Thomas, C. Hsu, J. Vogel, Fresh and hardened properties of self-consolidating fiber-reinforced concrete, ACI Materials Journal 104 (5) (2007) 491–500.
K. Marar, O. Eren, I. Yitmena, Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC), Materials Research 14 (2) (2011) 239–247. https://doi.org/10.1590/S1516-14392011005000042
F. Wafa, S. Ashour, Mechanical properties high strength fiber reinforced concrete, ACI Materials Journal 89 (5) (1992) 449–455.
M. Tabatabaeian, A. Khaloo, A. Joshaghani, E. Hajibandeh, Experimental investigation on effects of hybrid fibers on rheological, mechanical, and durability properties of high-strength SCC, Construction and Building Materials 147 (2017) 497–509. https://doi.org/10.1016/j. conbuildmat.2017.04.181
F. Köksal, A. Ilki, M. Tasdemir, Optimum mix design of steel-fibrereinforced concrete plates, Arabian Journal for Science and Engineering 38 (11) (2013) 2971–2983. https://doi.org/10.1007/s13369-012-0468-y
G. Ruiz, Á De La Rosa, S. Wolf, E. Poveda, Model for the compressive stress-strain relationship of steel fiber-reinforced concrete for non-linear structural analysis, Hormigón y Acero 69-Suppl. 1 (2018) 75–80. https://doi.org/10.1016/j.hya.2018.10.001
G. Ruiz, Á. De La Rosa, E. Poveda, Relationship between residual flexural strength and compression strength in steel-fiber reinforced concrete within the new Eurocode 2 regulatory framework, Theoretical and Applied Fracture Mechanics 103 (2019) 102310. https://doi. org/10.1016/j.tafmec.2019.102310
Á. De La Rosa, G. Ruiz, E. Poveda, Study of the compression behavior of steel-fiber reinforced concrete by means of the response surface methodology, Applied Sciences 9:24 (2019) 5330. https://doi. org/10.3390/app9245330
M. Sargin, Stress-strain Relationship for Concrete and the Analysis of Structural Concrete Sections, Studies series, Solid Mechanics Division, University of Waterloo, 1971.
EN 1994-1-1, Design of Composite Steel and Concrete Structures, European Committee for Standardization–CEN, 2013.
EN 1993-1-1, Design of Steel Structures: General rules and rules for buildings, European Committee for Standardization–CEN, 2005.
G. Hanswille, G. Sedlacek, D. Anderson, The use of steel grades S460 and S420 in composite structures, Tech. rep., ECCS-EUROFER improvements by TC11 to Eurocode 4 (1996).
CEN, Eurocode 4, Design of composite steel and concrete structures. Part 1-1: Part 1-1: General rules and rules for buildings, prEN 1994-1-1: 2022, available through the National members at CEN TC250/SC4 until approved as EN (2022).
M. Schäfer, Q. Zhang, M. Banfi, Background document on materials and limits for plastic moment resistance, Tech. rep., European Mandate M515, CEN/ TC250/SC4.T6, CEN-Documents CEN/TC250/SC4 (February 2022).
EN 10025, Hot rolled products of structural steels, European Committee for Standardization–CEN, 2019.
M. Schäfer, Q. Zhang, Zur dehnungsbegrenzten Momententragfhigkeit von Flachdecken in Verbundbauweise – Grenzen der plastischen Bemessung, Stahlbau 88 (7) (2019) 653–664.