[en] The most characteristic functional property of antiferroelectric materials is the possibility to induce a phase transition from a nonpolar to a polar phase by an electric field. Here, we investigate the effect of this field-induced phase transition on the birefringence change of PbZr0.95Ti0.05O3. We use a transparent polycrystalline PbZr0.95Ti0.05O3 film grown on PbTiO3/HfO2/SiO2 with interdigitated electrodes to directly investigate changes in birefringence in a simple transmission geometry. In spite of the polycrystalline nature of the film and its moderate thickness, the field-induced transition produces a sizable effect observable under a polarized microscope. The film in its polar phase is found to behave like a homogeneous birefringent medium. The time evolution of this field-induced birefringence provides information about irreversibilities in the antiferroelectric switching process and its slow dynamics. The change in birefringence has two main contributions: One that responds briskly and a slower one that rises and saturates over a period of as long as 30 min. Possible origins for this long saturation and relaxation times are discussed.
Research center :
LIST - Luxembourg Institute of Science & Technology University of Luxembourg
Disciplines :
Physics
Author, co-author :
BISWAS, Pranab ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; 2Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials
Milesi-Brault, Cosme; Czech Academy of Sciences > Institute of Physics ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials
Martínez, Alfredo Blázquez; Luxembourg Institute of Science & Technology - LIST > Materials Research and Technology Department ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials
Aruchamy, Naveen; Luxembourg Institute of Science & Technology - LIST > Materials Research and Technology Department
Song, Longfei; Luxembourg Institute of Science & Technology - LIST > Materials Research and Technology Department
Kovacova, Veronika; Luxembourg Institute of Science & Technology - LIST > Materials Research and Technology Department, ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials
Glinšek, Sebastjan; Luxembourg Institute of Science & Technology - LIST > Materials Research and Technology Department ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials
Granzow, Torsten; Luxembourg Institute of Science & Technology - LIST > Materials Research and Technology Department, ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials
Defay, Emmanuel; Luxembourg Institute of Science & Technology - LIST > Materials Research and Technology Department, ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials
GUENNOU, Mael ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS) ; Inter-institutional Research Group Uni.lu–LIST on Ferroic Materials
External co-authors :
yes
Language :
English
Title :
Birefringence induced by antiferroelectric switching in transparent polycrystalline PbZr0.95Ti0.05O3 film
Publication date :
20 September 2022
Journal title :
Physical Review Materials
eISSN :
2475-9953
Publisher :
American Physical Society (APS), New York, United States - New York
Volume :
6
Issue :
9
Pages :
L091403
Peer reviewed :
Peer Reviewed verified by ORBi
Focus Area :
Physics and Materials Science
Funders :
Luxembourgish National Research Fund (INTER/ANR/16/11562984/EXPAND and C16/MS/11348912/Guennou “BIAFET”). Luxembourgish National Research Fund (FNR-PRIDE/15/10935404 “MASSENA”). Luxembourgish National Research Fund under the project PACE (Photovoltaics: Advanced Concepts for high Efficiency, PRIDE/17/12246511/PACE). Operational Programme Research, Development, and Education (financed by European Structural and Investment Funds and by the Czech Ministry of Education, Youth, and Sports), Project No. SOLID21-CZ.02.1.01/0.0/0.0/16_019/0000760.
C. Kittel, Theory of antiferroelectric crystals, Phys. Rev. 82, 729 (1951) 10.1103/PhysRev.82.729.
G. Shirane, E. Sawaguchi, and Y. Takagi, Dielectric properties of lead zirconate, Phys. Rev. 84, 476 (1951) 10.1103/PhysRev.84.476.
E. Sawaguchi, H. Maniwa, and S. Hoshino, Antiferroelectric structure of lead zirconate, Phys. Rev. 83, 1078 (1951) 10.1103/PhysRev.83.1078.
S. Ke, M. Ye, P. Lin, H. Huang, B. Peng, Q. Sun, F. Wang, X. Peng, and X. Zeng, (Equation presented)-based antiferroelectric thin film capacitors with high energy storage density, Int. J. Adv. Appl. Phys. Res. 1, 35 (2014) 10.15379/2408-977X.2014.01.01.4.
S.-T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, and D. Damjanovic, High-strain lead-free antiferroelectric electrostrictors, Adv. Mater. 21, 4716 (2009) 10.1002/adma.200901516.
X. Li, S.-G. (David) Lu, X. Chen, H. Gu, X. Qian, and Q. Zhang, Pyroelectric and electrocaloric materials, J. Mater. Chem. C 1, 23 (2012) 10.1039/C2TC00283C.
P. D. Thacher, Electrocaloric effects in some ferroelectric and antiferroelectric (Equation presented) compounds, J. Appl. Phys. 39, 1996 (1968) 10.1063/1.1656478.
P. V. Castro, R. Faye, M. Vellvehi, Y. Nouchokgwe, X. Perpiñà, J. M. Caicedo, X. Jordà, K. Roleder, D. Kajewski, A. P.-Tomas, E. Defay, and G. Catalan, Origin of large negative electrocaloric effect in antiferroelectric (Equation presented), Phys. Rev. B 103, 054112 (2021) 10.1103/PhysRevB.103.054112.
M. Valant, Electrocaloric materials for future solid-state refrigeration technologies, Prog. Mater. Sci. 57, 980 (2012) 10.1016/j.pmatsci.2012.02.001.
B. Jaffe, W. R. Cook, and H. Jaffe, Properties of (Equation presented), (Equation presented), (Equation presented), and (Equation presented) plain and modified, Piezoelectric Ceramics (Academic, New York, 1971), pp. 115-134.
S. E. Reyes-Lillo and K. M. Rabe, Antiferroelectricity and ferroelectricity in epitaxially strained (Equation presented) from first principles, Phys. Rev. B 88, 180102 (R) (2013) 10.1103/PhysRevB.88.180102.
J. Íñiguez, M. Stengel, S. Prosandeev, and L. Bellaiche, First-principles study of the multimode antiferroelectric transition in (Equation presented), Phys. Rev. B 90, 220103 (R) (2014) 10.1103/PhysRevB.90.220103.
I. Lazar, A. Majchrowski, A. Soszyński, and K. Roleder, Phase transitions and local polarity above (Equation presented) in a (Equation presented) single crystal, Crystals 10, 4 (2020) 10.3390/cryst10040286.
L. S. Kamzina and I. P. Raevskii, Electric field-induced birefringence in (Equation presented) (PBSN-6) solid-solution single crystals, Phys. Solid State 47, 1143 (2005) 10.1134/1.1946870.
W. Jo, H. Cho, T. W. Noh, B. I. Kim, D. Kim, Z. G. Khim, and S. Kwun, Structural and electro-optic properties of pulsed laser deposited (Equation presented) thin films on MgO, Appl. Phys. Lett. 63, 2198 (1993) 10.1063/1.110552.
L. S. Kamzina, I. P. Raevskii, V. V. Eremkin, V. G. Smotrakov, and E. V. Sakhkar, Evolution of the optical properties of (Equation presented) (PBSN-6) solid solution single crystals caused by a static electric field, Phys. Solid State 45, 1112 (2003) 10.1134/1.1583799.
S. Lee, T. W. Noh, and J. Lee, Control of epitaxial growth of pulsed laser deposited (Equation presented) films and their electro-optic effects, Appl. Phys. Lett. 68, 472 (1996) 10.1063/1.116417.
F. Wang, K. K. Li, and G. H. Haertling, Transverse electro-optic effect of antiferroelectric lead zirconate thin films, Opt. Lett. 17, 1122 (1992) 10.1364/OL.17.001122.
F. Wang, K. K. Li, E. Furman, and G. H. Haertling, Discrete electro-optic response in lead zirconate thin films from a field-induced phase transition, Opt. Lett. 18, 1615 (1993) 10.1364/OL.18.001615.
S. Glinšek, M. A. Mahjoub, M. Rupin, T. Schenk, N. Godard, S. Girod, J.-B. Chemin, R. Leturcq, N. Valle, S. Klein, C. Chappaz, and E. Defay, Fully transparent friction-modulation haptic device based on piezoelectric thin film, Adv. Funct. Mater. 30, 2003539 (2020) 10.1002/adfm.202003539.
N. Godard, P. Grysan, E. Defay, and S. Glinšek, Growth of {100}-oriented lead zirconate titanate thin films mediated by a safe solvent, J. Mater. Chem. C 9, 281 (2021) 10.1039/D0TC04066E.
H. Fujishita and S. Katano, Re-examination of the antiferroelectric structure of (Equation presented), J. Phys. Soc. Jpn. 66, 3484 (1997) 10.1143/JPSJ.66.3484.
F. K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I, J. Inorg. Nucl. Chem. 9, 113 (1959) 10.1016/0022-1902(59)80070-1.
R. Nigon, T. M. Raeder, and P. Muralt, Characterization methodology for lead zirconate titanate thin films with interdigitated electrode structures, J. Appl. Phys. 121, 204101 (2017) 10.1063/1.4983772.
C. Milesi-Brault, N. Godard, S. Girod, Y. Fleming, B. El Adib, N. Valle, S. Glinšek, E. Defay, and M. Guennou, Critical field anisotropy in the antiferroelectric switching of (Equation presented) films, Appl. Phys. Lett. 118, 042901 (2021) 10.1063/5.0029599.
W. S. Rasband, ImageJ. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij (1997-2015).
M. Born and E. Wolf, Optics of crystals, Principles of Optics: Electromagnetic Theory of Propagation Interference and Diffraction of Light, 7th ed. (Cambridge University Press, Cambridge, UK, 1999), p. 696.
F. Jona, G. Shirane, and R. Pepinsky, Optical Study of (Equation presented) and (Equation presented) Single Crystals, Phys. Rev. 97, 1584 (1955) 10.1103/PhysRev.97.1584.
S. Huband, A. M. Glazer, K. Roleder, A. Majchrowski, and P. A. Thomas, Crystallographic and optical study of (Equation presented) crystals, J. Appl. Crystallogr. 50, 378 (2017) 10.1107/S1600576717000309.
T. K. Song, S. Aggarwal, Y. Gallais, B. Nagaraj, R. Ramesh, and J. T. Evans, Activation fields in ferroelectric thin film capacitors: Area dependence, Appl. Phys. Lett. 73, 3366 (1998) 10.1063/1.122771.
S. S. N. Bharadwaja and S. B. Krupanidhi, Backward switching phenomenon from field forced ferroelectric to antiferroelectric phases in antiferroelectric (Equation presented) thin films, J. Appl. Phys. 89, 4541 (2001) 10.1063/1.1331659.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevMaterials.6.L091403 for more discussion on frequency-dependent hysteresis loops and fatigue measurements on thin film.
C. Yang, E. Sun, B. Yang, and W. Cao, Modeling dynamic rotation of defect dipoles and poling time dependence of piezoelectric effect in ferroelectrics, Appl. Phys. Lett. 114, 102902 (2019) 10.1063/1.5074146.
W. Geng, Y. Liu, X. Lou, F. Zhang, Q. Liu, B. Dkhil, M. Zhang, X. Ren, H. He, and A. Jiang, Polarization fatigue in antiferroelectric (Equation presented) thin films: The role of the effective strength of driving waveform, Ceram. Int. 41, S289 (2015) 10.1016/j.ceramint.2015.03.265.
L. Pintilie, K. Boldyreva, M. Alexe, and D. Hesse, Capacitance tuning in antiferroelectric-ferroelectric (Equation presented) epitaxial multilayers, New J. Phys. 10, 013003 (2008) 10.1088/1367-2630/10/1/013003.
L. Pintilie, K. Boldyreva, M. Alexe, and D. Hesse, Coexistence of ferroelectricity and antiferroelectricity in epitaxial (Equation presented) films with different orientations, J. Appl. Phys. 103, 024101 (2008) 10.1063/1.2831023.
X. Dai, J.-F. Li, and D. Viehland, Weak ferroelectricity in antiferroelectric lead zirconate, Phys. Rev. B 51, 2651 (1995) 10.1103/PhysRevB.51.2651.
H. Aramberri, C. Cazorla, M. Stengel, and J. Íñiguez, On the possibility that (Equation presented) not be antiferroelectric, npj Comput. Mater. 7, 196 (2021) 10.1038/s41524-021-00671-w.
N. Mukhin, D. Chigirev, L. Bakhchova, and A. Tumarkin, Microstructure and properties of PZT films with different PbO content-Ionic mechanism of built-in fields formation, Materials 12, 2926 (2019) 10.3390/ma12182926.
M. Dawber and J. F. Scott, A model for fatigue in ferroelectric perovskite thin films, Appl. Phys. Lett. 76, 1060 (2000) 10.1063/1.125938.
P. Erhart, P. Träskelin, and K. Albe, Formation and switching of defect dipoles in acceptor-doped lead titanate: A kinetic model based on first-principles calculations, Phys. Rev. B 88, 024107 (2013) 10.1103/PhysRevB.88.024107.
B. Akkopru-Akgun, W. Zhu, M. T. Lanagan, and S. Trolier-McKinstry, The effect of imprint on remanent piezoelectric properties and ferroelectric aging of (Equation presented) thin films, J. Am. Ceram. Soc. 102, 5328 (2019) 10.1111/jace.16367.
C. Borderon, R. Renoud, M. Ragheb, and H. W. Gundel, Dielectric long time relaxation of domains walls in (Equation presented) thin films, Appl. Phys. Lett. 104, 072902 (2014) 10.1063/1.4866156.
D. Kajewski, I. Jankowska-Sumara, J.-H. Ko, J. W. Lee, S. F. U. H. Naqvi, R. Sitko, A. Majchrowski, and K. Roleder, Long-term isothermal phase transformation in lead zirconate, Materials 15, 4077 (2022) 10.3390/ma15124077.