[en] What will the future of UAV cellular communicationsbe?In this tutorial article, we address such a compelling yetdifficult question by embarking on a journey from 5G to 6Gand expounding a large number of case studies supported byoriginal results. We start by overviewing the status quo on UAVcommunications from an industrial standpoint, providing freshupdates from the 3GPP and detailing new 5G NR features insupport of aerial devices. We then dissect the potential andthe limitations of such features. In particular, we demonstratehow sub-6 GHz massive MIMO can successfully tackle cellselection and interference challenges, we showcase encouragingmmWave coverage evaluations in both urban and suburban/ruralsettings, and we examine the peculiarities of direct device-to-device communications in the sky. Moving on, we sneak a peekat next-generation UAV communications, listing some of the usecases envisioned for the 2030s. We identify the most promising6G enablers for UAV communication, those expected to takethe performance and reliability to the next level. For each ofthese disruptive new paradigms (non-terrestrial networks, cell-free architectures, artificial intelligence, reconfigurable intelligentsurfaces, and THz communications), we gauge the prospectivebenefits for UAVs and discuss the main technological hurdles thatstand in the way. All along, we distil our numerous findings intoessential takeaways, and we identify key open problems worthyof further study.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Geraci, Giovanni
Garcia-Rodriguez, Adrian
Azari, M. Mahdi
Lozano, Angel
Mezzavilla, Marco
CHATZINOTAS, Symeon ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Chen, Yun
Rangan, Sundeep
Di Renzo, Marco
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
What Will the Future ofUAV Cellular Communications Be?A Flight from 5G to 6G
Forget Self-Driving Cars-The Pentagon Wants Autonomous Ships, Choppers and Jets, Wall Street J., New York, NY, USA, 2021.
G. Geraci, A. Garcia-Rodriguez, and X. Lin, "Preparing the ground for drone communications," in IEEE ComSoc Technol. News, 2019. [Online]. Available: https://www.comsoc.org/publications/ctn/ preparing-ground-drone-communications
"Technical specification group radio access network; study on enhanced LTE support for aerial vehicles (release 15)," 3GPP, Sophia Antipolis, France, 3GPP Rep. 36.777, Dec. 2017.
Y. Zeng, I. Guvenc, R. Zhang, G. Geraci, and D. W. Matolak, Eds., UAV Communications for 5G and Beyond. Hoboken, NJ, USA: Wiley, 2020.
W. Saad, M. Bennis, M. Mozaffari, and X. Lin, Wireless Communications and Networking for Unmanned Aerial Vehicles. Cambridge, U.K.: Cambridge Univ. Press, 2020.
Unmanned Aerial Systems (UAS) Support in 3GPP; Stage 1; Release 17, 3GPP Standard TS 22.125, 2019.
"New work item ID on NR support for UAV," 3GPP, Sophia Antipolis, France, 3GPP document RP-212715, 2021.
"Study on channel model for frequencies from 0.5 to 100 GHz (release 16)," 3GPP, Sophia Antipolis, France, 3GPP Rep. 38.901, Dec. 2019.
Y. Zeng, R. Zhang, and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges," IEEE Commun. Mag., vol. 54, no. 5, pp. 36-42, May 2016.
W. Shi, H. Zhou, J. Li, W. Xu, N. Zhang, and X. Shen, "Drone assisted vehicular networks: Architecture, challenges and opportunities," IEEE Netw., vol. 32, no. 3, pp. 130-137, May/Jun. 2018.
E. Vinogradov, H. Sallouha, S. De Bast, M. M. Azari, and S. Pollin, "Tutorial on UAV: A blue sky view on wireless communication," 2019, arXiv:1901.02306.
H. Shakhatreh et al., "Unmanned aerial vehicles (UAVs): A survey on civil applications and key research challenges," IEEE Access, vol. 7, pp. 48572-48634, 2019.
Y. Zeng, Q. Wu, and R. Zhang, "Accessing from the sky: A tutorial on UAV communications for 5G and beyond," Proc. IEEE, vol. 107, no. 12, pp. 2327-2375, Dec. 2019.
B. Li, Z. Fei, and Y. Zhang, "UAV communications for 5G and beyond: Recent advances and future trends," IEEE Internet Things J., vol. 6, no. 2, pp. 2241-2263, Apr. 2019.
S. Hayat, E. Yanmaz, and R. Muzaffar, "Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint," IEEE Commun. Surveys Tuts., vol. 18, no. 4, pp. 2624-2661, 4th Quart., 2016.
M.-A. Lahmeri, M. A. Kishk, and M.-S. Alouini, "Artificial intelligence for UAV-enabled wireless networks: A survey," 2020, arXiv:2009.11522.
N. H. Motlagh, T. Taleb, and O. Arouk, "Low-altitude unmanned aerial vehicles-based Internet of Things services: Comprehensive survey and future perspectives," IEEE Internet Things J., vol. 3, no. 6, pp. 899-922, Dec. 2016.
R. Shakeri et al., "Design challenges of multi-UAV systems in cyber-physical applications: A comprehensive survey and future directions," IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3340-3385, 4th Quart., 2019.
S. Zhang, H. Zhang, and L. Song, "Beyond D2D: Full dimension UAV-to-everything communications in 6G," IEEE Trans. Veh. Technol., vol. 69, no. 6, pp. 6592-6602, Jun. 2020.
K. Namuduri, S. Chaumette, J. Kim, and J. Sterbenz, Eds., UAV Networks and Communications. Cambridge, U.K.: Cambridge Univ. Press, 2017.
H. Zhang, L. Song, and Z. Han, Unmanned Aerial Vehicle Applications Over Cellular Networks for 5G and Beyond. Cham, Switzerland: Springer, 2020.
M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, "A tutorial on UAVs for wireless networks: Applications, challenges, and open problems," IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2334-2360, 3rd Quart., 2019.
Q. Wu et al., "A comprehensive overview on 5G-and-beyond networks with UAVs: From communications to sensing and intelligence," 2020, arXiv:2010.09317.
D. Mishra and E. Natalizio, "A survey on cellular-connected UAVs: Design challenges, enabling 5G/B5G innovations, and experimental advancements," Comput. Netw., vol. 182, Dec. 2020, Art. no. 107451.
Y. Huang, Q. Wu, R. Lu, X. Peng, and R. Zhang, "Massive MIMO for cellular-connected UAV: Challenges and promising solutions," IEEE Commun. Mag., vol. 59, no. 2, pp. 84-90, Feb. 2021.
H. Zhang, L. Song, Z. Han, and H. V. Poor, "Cooperation techniques for a cellular Internet of unmanned aerial vehicles," IEEE Wireless Commun., vol. 26, no. 5, pp. 167-173, Oct. 2019.
Z. Xiao et al., "A survey on millimeter-wave beamforming enabled UAV communications and networking," IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 557-610, 1st Quart., 2022.
L. Zhang et al., "A survey on 5G Millimeter wave communications for UAV-assisted wireless networks," IEEE Access, vol. 7, pp. 117460-117504, 2019.
M. M. Azari, S. Solanki, S. Chatzinotas, and M. Bennis, "THzempowered UAVs in 6G: Opportunities, challenges, and trade-offs," 2022, arXiv:2201.07886.
P. Boccadoro, D. Striccoli, and L. A. Grieco, "An extensive survey on the Internet of Drones," 2020, arXiv:2007.12611.
O. S. Oubbati, M. Atiquzzaman, T. A. Ahanger, and A. Ibrahim, "Softwarization of UAV networks: A survey of applications and future trends," IEEE Access, vol. 8, pp. 98073-98125, 2020.
L. Gupta, R. Jain, and G. Vaszkun, "Survey of important issues in UAV communication networks," IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1123-1152, 2nd Quart., 2016.
J. Liu, Y. Shi, Z. M. Fadlullah, and N. Kato, "Space-air-ground integrated network: A survey," IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2714-2741, 4th Quart., 2018.
X. Cao, P. Yang, M. Alzenad, X. Xi, D. Wu, and H. Yanikomeroglu, "Airborne communication networks: A survey," IEEE J. Sel. Areas Commun., vol. 36, no. 9, pp. 1907-1926, Sep. 2018.
N.-N. Dao et al., "Survey on aerial radio access networks: Toward a comprehensive 6G access infrastructure," IEEE Commun. Surveys Tuts., vol. 23, no. 2, pp. 1193-1225, 2nd Quart., 2021.
M. M. Azari et al., "Evolution of non-terrestrial networks from 5G to 6G: A survey," 2021, arXiv:2107.06881
A. Fotouhi et al., "Survey on UAV cellular communications: Practical aspects, standardization advancements, regulation, and security challenges," IEEE Commun. Surveys Tuts., vol. 21, no. 4, pp. 3417-3442, 4th Quart., 2019.
X. Lin et al., "The sky is not the limit: LTE for unmanned aerial vehicles," IEEE Commun. Mag., vol. 56, no. 4, pp. 204-210, Apr. 2018.
H. C. Nguyen, R. Amorim, J. Wigard, I. Z. Kovács, T. B. Sørensen, and P. Mogensen, "How to ensure reliable connectivity for aerial vehicles over cellular networks," IEEE Access, vol. 6, pp. 12304-12317, 2018.
B. Van der Bergh, A. Chiumento, and S. Pollin, "LTE in the sky: Trading off propagation benefits with interference costs for aerial nodes," IEEE Commun. Mag., vol. 54, no. 5, pp. 44-50, May 2016.
G. Geraci, A. Garcia-Rodriguez, L. G. Giordano, D. López-Pérez, and E. Björnson, "Understanding UAV cellular communications: From existing networks to massive MIMO," IEEE Access, vol. 6, pp. 67853-67865, 2018.
I. Bor-Yaliniz, M. Salem, G. Senerath, and H. Yanikomeroglu, "Is 5G ready for drones: A look into contemporary and prospective wireless networks from a standardization perspective," IEEE Wireless Commun., vol. 26, no. 1, pp. 18-27, Feb. 2019.
A. A. Khuwaja, Y. Chen, N. Zhao, M.-S. Alouini, and P. Dobbins, "A survey of channel modeling for UAV communications," IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 2804-2821, 4th Quart., 2018.
W. Khawaja, I. Guvenc, D. W. Matolak, U.-C. Fiebig, and N. Schneckenburger, "A survey of air-to-ground propagation channel modeling for unmanned aerial vehicles," IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2361-2391, 3rd Quart., 2019.
R. Amorim, H. Nguyen, P. Mogensen, I. Z. Kovács, J. Wigard, and T. B. Sørensen, "Radio channel modeling for UAV communication over cellular networks," IEEE Wireless Commun. Lett., vol. 6, no. 4, pp. 514-517, Aug. 2017.
T. J. Willink, C. C. Squires, G. W. K. Colman, and M. T. Muccio, "Measurement and characterization of low-altitude air-to-ground MIMO channels," IEEE Trans. Veh. Technol., vol. 65, no. 4, pp. 2637-2648, Apr. 2016.
E. W. Frew and T. X. Brown, "Airborne communication networks for small unmanned aircraft systems," Proc. IEEE, vol. 96, no. 12, pp. 2008-2027, Dec. 2008.
Y. Zeng, J. Lyu, and R. Zhang, "Cellular-connected UAV: Potential, challenges, and promising technologies," IEEE Wireless Commun., vol. 26, no. 1, pp. 120-127, Feb. 2019.
A. I. Hentati and L. C. Fourati, "Comprehensive survey of UAVs communication networks," Comput. Stand. Interfaces, vol. 72, Oct. 2020, Art. no. 103451.
A. S. Abdalla, K. Powell, V. Marojevic, and G. Geraci, "UAV-assisted attack prevention, detection, and recovery of 5G networks," IEEE Wireless Commun., vol. 27, no. 4, pp. 40-47, Aug. 2020.
J. Urama et al., "UAV-aided interference assessment for private 5G NR deployments: Challenges and solutions," IEEE Commun. Mag., vol. 58, no. 8, pp. 89-95, Aug. 2020.
I. Bekmezci, O. K. Sahingoz, and S. Temel, "Flying ad-hoc networks (FANETs): A survey," Ad Hoc Netw., vol. 11, no. 3, pp. 1254-1270, 2013.
Q. Song, Y. Zeng, J. Xu, and S. Jin, "A survey of prototype and experiment for UAV communications," Sci. China Inf. Sci., vol. 64, no. 4, 2021, Art. no. 140301.
A. S. Abdalla and V. Marojevic, "Communications standards for unmanned aircraft systems: The 3GPP perspective and research drivers," 2020, arXiv:2009.03533.
F. Noor, M. A. Khan, A. Al-Zahrani, I. Ullah, and K. A. Al-Dhlan, "A review on communications perspective of flying ad-hoc networks: Key enabling wireless technologies, applications, challenges and open research topics," Drones, vol. 4, no. 4, p. 65, 2020.
M. Hassanalian and A. Abdelkefi, "Classifications, applications, and design challenges of drones: A review," Progr. Aerosp. Sci., vol. 91, pp. 99-131, May 2017.
S. A. R. Naqvi, S. A. Hassan, H. Pervaiz, and Q. Ni, "Drone-aided communication as a key enabler for 5G and resilient public safety networks," IEEE Commun. Mag., vol. 56, no. 1, pp. 36-42, Jan. 2018.
F. Al-Turjman, M. Abujubbeh, A. Malekloo, and L. Mostarda, "UAVs assessment in software-defined IoT networks: An overview," Comput. Commun., vol. 150, pp. 519-536, Jan. 2020.
A. Tahir, J. Böling, M.-H. Haghbayan, H. T. Toivonen, and J. Plosila, "Swarms of unmanned aerial vehicles-A survey," J. Ind. Inf. Integr., vol. 16, Dec. 2019, Art. no. 100106.
H. Nawaz, H. M. Ali, and A. A. Laghari, "UAV communication networks issues: A review," Arch. Comput. Methods Eng., vol. 28, pp. 1349-1369, Mar. 2020.
O. Kodheli et al., "Satellite communications in the new space era: A survey and future challenges," IEEE Commun. Surveys Tuts., vol. 23, no. 1, pp. 70-109, 1st Quart., 2021.
A. Sharma et al., "Communication and networking technologies for UAVs: A survey," J. Netw. Comput. Appl., vol. 168, Oct. 2020, Art. no. 102739.
Z. Xiao, L. Zhu, and X.-G. Xia, "UAV communications with millimeter-wave beamforming: Potentials, scenarios, and challenges," China Commun., vol. 17, no. 9, pp. 147-166, Sep. 2020.
W. Lu, F. Fan, J. Chu, P. Jing, and S. Yuting, "Wearable computing for Internet of Things: A discriminant approach for human activity recognition," IEEE Internet Things J., vol. 6, no. 2, pp. 2749-2759, Apr. 2019.
L. Wang, Y. L. Che, J. Long, L. Duan, and K. Wu, "Multiple access MmWave design for UAV-aided 5G communications," IEEE Wireless Commun., vol. 26, no. 1, pp. 64-71, Feb. 2019.
I. Guvenc, W. Saad, M. Bennis, C. Wietfeld, M. Ding, and L. Pike, "Wireless communications, networking, and positioning with unmanned aerial vehicles," IEEE Commun. Mag., vol. 54, no. 5, pp. 24-25, May 2016.
E. Dahlman, S. Parkvall, and J. Skold, 5G NR: The Next Generation Wireless Access Technology. Amsterdam, The Netherlands: Academic, 2020.
W. Tong and P. Zhu, 6G: The Next Horizon. Cambridge, U.K.: Cambridge Univ. Press, 2021.
E. C. Strinati et al., "6G: The next frontier: From holographic messaging to artificial intelligence using subterahertz and visible light communication," IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 42-50, Sep. 2019.
M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, "Toward 6G networks: Use cases and technologies," IEEE Commun. Mag., vol. 58, no. 3, pp. 55-61, Mar. 2020.
"Expanded 6G vision, use cases and societal values," HEXA-X, Espoo, Finland, document Hexa Deliverable D1.2, 2021.
Technology Futures: Spotlight on the Technologies Shaping Communications for the Future, Ofcom, London, U.K., 2021.
W. Saad, M. Bennis, and M. Chen, "A vision of 6G wireless systems: Applications, trends, technologies, and open research problems," IEEE Netw., vol. 34, no. 3, pp. 134-142, May/Jun. 2020.
6G Wireless: A New Strategic Vision, Univ. Surrey 5GIC Strategy Advisory Board, Guildford, U.K., 2021.
Z. Zhang et al., "6G wireless networks: Vision, requirements, architecture, and key technologies," IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 28-41, Sep. 2019.
Technical Specification Group Services and System Aspects; Unmanned Aerial System (UAS) Support in 3GPP; Stage 1; Release 17, 3GPP Standard TS 22.125, 2019.
Technical Specification Group Services and System Aspects; Enhancements for Unmanned Aerial Vehicles; Stage 1; Release 17, 3GPP Standard TS 22.829, 2019.
"Drones with 5G Technology-The 'FreeRail' Project Consortium Successfully Completes First Test Series Together With Ericsson." Quantum Systems. 2020. [Online]. Available: https://www.quantumsystems. com/2020/12/21/drones-with-5g-technology-the-freerailproject-consortium-successfully-completes-first-test-series-togetherwith-ericsson/
A. Bonfante et al., "5G massive MIMO architectures: Self-backhauled small cells versus direct access," IEEE Trans. Veh. Technol., vol. 68, no. 10, pp. 10003-10017, Oct. 2019.
N. Cherif, W. Jaafar, H. Yanikomeroglu, and A. Yongacoglu, "3D aerial highway: The key enabler of the retail industry transformation," 2020, arXiv:2009.09477.
"Amazon Prime Air." [Online]. Available: https://www.amazon.com/ Amazon-Prime-Air/b?ie=UTF8 & node=8037720011 (Accessed: Aug. 23, 2021).
D. Lopez-Perez et al., "A survey on 5G radio access network energy efficiency: Massive MIMO, lean carrier design, sleep modes, and machine learning," 2021, arXiv:2101.11246.
R. W. Heath, Jr. and A. Lozano, Foundations of MIMO Communication. Cambridge, U.K.: Cambridge Univ. Press, 2018.
S. Rangan, T. S. Rappaport, and E. Erkip, "Millimeter-wave cellular wireless networks: Potentials and challenges," Proc. IEEE, vol. 102, no. 3, pp. 366-385, Mar. 2014.
R. Amorim, I. Z. Kovacs, J. Wigard, G. Pocovi, T. B. Sorensen, and P. Mogensen, "Improving drone's command and control link reliability through dual-network connectivity," in Proc. IEEE Veh. Tech. Conf. (VTC), 2019, pp. 1-6.
Y. Zeng and R. Zhang, "Energy-efficient UAV communication with trajectory optimization," IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 3747-3760, Jun. 2017.
A. Filippone, Flight Performance of Fixed and Rotary Wing Aircraft. Amsterdam, The Netherlands: Elsevier, 2006.
H. Sallouha, M. M. Azari, and S. Pollin, "Energy-constrained UAV trajectory design for ground node localization," in Proc. IEEE Globecom, 2018, pp. 1-7.
"The 6 Levels of Vehicle Autonomy Explained." Synopsis. [Online]. Available: https://www.synopsys.com/automotive/autonomous-drivinglevels. html (Accessed: Aug. 23, 2021).
"Air Taxis, Self-Driving Cars: What Your Commute Could Look Like in 2030." Stuff. 2020. [Online]. Available: https://www.stuff.co.nz/ motoring/118949564/air-taxis-selfdriving-cars-what-your-commutecould-look-like-in-2030
R. Saracco, Megatrends for This Decade-XIII. IEEE Future Directions, Piscataway, NJ, USA, 2020.
C. Stöcker, R. Bennett, F. Nex, M. Gerke, and J. Zevenbergen, "Review of the current state of UAV regulations," Remote Sens., vol. 9, no. 5, p. 459, 2017.
R. Berger, "The Traffic of the Future is Taking Off: Air Taxis Open Up Huge Market Potential," 2020. [Online]. Available: https:// rolandberger-com.mynewsdesk.com/pressreleases/the-traffic-of-thefuture-is-taking-off-air-taxis-open-up-huge-market-potential-3049707
"Morgan Stanley Says Market for Self-Flying Cars Could Rise to $1.5 Trillion by 2040." Yahoo! News. 2018. [Online]. Available: https://uk.finance.yahoo.com/news/morgan-stanley-report-says-market-023354657.html
"Heaviside." KittyHawk. [Online]. Available: https://kittyhawk.aero/ (Accessed: Aug. 23, 2021)
"SkyDrive." Cartivator. [Online]. Available: http://cartivator.com/ (Accessed: Aug. 23, 2021)
"The Transition." Terrafugia. [Online]. Available: https://terrafugia.com/ (Accessed: Aug. 23, 2021)
"Drive. Fly. Be the Experience." Aeromobil. [Online]. Available: https://www.aeromobil.com/ (Accessed: Aug. 23, 2021).
"EHang Passenger Drone Makes Debut Flight in Korea: Air Taxis a 'Dream of Mankind"' DroneLife. 2020. [Online]. Available: https://dronelife.com/2020/11/12/ehang-passenger-drone-makes-debutflight-in-korea/
"Uber Air: Designing for the Community." Uber Elevate Whitepaper. [Online]. Available: https://d1nyezh1ys8wfo.cloudfront.net/static/ PDFs/Uber+Air_Designing+for+the+Community.pdf (Accessed: Aug. 23, 2021).
"Uber and AT & T Testing 5G for Flying Cars." ZDNet. 2019. [Online]. Available: https://www.zdnet.com/article/uber-and-at-t-testing-5g-forflying-cars/
N. Saeed, T. Y. Al-Naffouri, and M.-S. Alouini. "Wireless Communication for Flying Cars." [Online]. Available: https:// repository.kaust.edu.sa/bitstream/handle/10754/662814/WC_FC.pdf (Accessed: Aug. 23, 2021).
A. Bourdoux et al., "6G white paper on localization and sensing," 2020, arXiv:2006.01779.
G. Pan and M.-S. Alouini, "Flying car transportation system: Advances, techniques, and challenges," IEEE Access, vol. 9, pp. 24586-24603, 2021.
"Ooredoo Tested a 5G Connected Aerial Taxi at the Pearl-Qatar." 5G Observatory. 2018. [Online]. Available: https://5gobservatory.eu/ooredoo-tests-a-driverless-5g-flying-taxi/
"Satellite Components for the 5G System." 2018. [Online]. Available: https://www.3gpp.org/news-events/1933-sat_ntn
M. Giordani and M. Zorzi, "Non-terrestrial networks in the 6G era: Challenges and opportunities," IEEE Netw., vol. 35, no. 2, pp. 244-251, Mar./Apr. 2021.
S. Euler, X. Lin, E. Tejedor, and E. Obregon, "A primer on HIBS-High altitude platform stations as IMT base stations," 2021, arXiv:2101.03072.
H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, "Cell-free massive MIMO versus small cells," IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1834-1850, Mar. 2017.
S. Venkatesan, A. Lozano, and R. Valenzuela, "Network MIMO: Overcoming intercell interference in indoor wireless systems," in Proc. Asilomar Conf. Signals Syst. Comput., 2007, pp. 83-87.
R. Irmer et al., "Coordinated multipoint: Concepts, performance, and field trial results," IEEE Commun. Mag., vol. 49, no. 2, pp. 102-111, Feb. 2011.
M. Di Renzo et al., "Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come," EURASIP J. Wireless Commun. Netw., vol. 129, May 2019.
E. Basar, M. Di Renzo, J. de Rosny, M. Debbah, M.-S. Alouini, and R. Zhang, "Wireless communications through reconfigurable intelligent surfaces," IEEE Access, vol. 7, pp. 116753-116773, 2019.
M. Di Renzo et al., "Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead," IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2450-2525, Nov. 2020.
M. Di Renzo et al., "Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison," IEEE Open J. Commun. Soc., vol. 1, pp. 798-807, 2020.
C. Huang et al., "Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends," IEEE Wireless Commun., vol. 27, no. 5, pp. 118-125, Oct. 2020.
Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, "Intelligent reflecting surface aided wireless communications: A tutorial," 2020, arXiv:2007.02759.
Q. Wu and R. Zhang, "Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network," IEEE Commun. Mag., vol. 58, no. 1, pp. 106-112, Jan. 2020.
E. C. Strinati et al., "Wireless environment as a service enabled by reconfigurable intelligent surfaces: The RISE-6G perspective," 2021, arXiv:2104.06265.
Y. Liu et al., "Reconfigurable intelligent surfaces: Principles and opportunities," 2020, arXiv:2007.03435.
R. Piesiewicz et al., "Short-range ultra-broadband terahertz communications: Concepts and perspectives," IEEE Antennas Propag. Mag., vol. 49, no. 6, pp. 24-39, Dec. 2007.
H. Elayan, O. Amin, B. Shihada, R. M. Shubair, and M.-S. Alouini, "Terahertz band: The last piece of RF spectrum puzzle for communication systems," IEEE Open J. Commun. Soc., vol. 1, pp. 1-32, 2019.
H. Hamada et al., "300-GHz-band 120-Gb/s wireless front-end based on InP-HEMT PAs and mixers," IEEE J. Solid-State Circuits, vol. 55, no. 9, pp. 2316-2335, Sep. 2020.
T. S. Rappaport et al., "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, vol. 7, pp. 78729-78757, 2019.
M. M. Azari, F. Rosas, and S. Pollin, "Reshaping cellular networks for the sky: Major factors and feasibility," in Proc. IEEE Int. Conf. Commun. (ICC), 2018, pp. 1-7.
Y. Chen, X. Lin, T. Khan, and M. Mozaffari, "Efficient drone mobility support using reinforcement learning," in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2020, pp. 1-6.
R. Muzaffar, C. Raffelsberger, A. Fakhreddine, J. L. Luque, D. Emini, and C. Bettstetter, "First experiments with a 5G-connected drone," 2020, arXiv:2004.03298.
A. Garcia-Rodriguez, G. Geraci, D. López-Pérez, L. G. Giordano, M. Ding, and E. Björnson, "The essential guide to realizing 5Gconnected UAVs with massive MIMO," IEEE Commun. Mag., vol. 57, no. 12, pp. 84-90, Dec. 2019.
G. Geraci, A. Garcia-Rodriguez, L. G. Giordano, D. Lopez-Perez, and E. Bjoernson, "Supporting UAV cellular communications through massive MIMO," in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2018, pp. 1-6.
M. M. Azari, F. Rosas, and S. Pollin, "Cellular connectivity for UAVs: Network modeling, performance analysis, and design guidelines," IEEE Trans. Wireless Commun., vol. 18, no. 7, pp. 3366-3381, Jul. 2019.
F. Rusek et al., "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013.
L. G. Giordano et al., "Uplink sounding reference signal coordination to combat pilot contamination in 5G massive MIMO," in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1-6.
H. H. Yang, G. Geraci, T. Q. S. Quek, and J. G. Andrews, "Cell-edgeaware precoding for downlink massive MIMO cellular networks," IEEE Trans. Signal Process., vol. 65, no. 13, pp. 3344-3358, Jul. 2017.
G. Geraci, A. Garcia-Rodriguez, D. López-Pérez, A. Bonfante, L. G. Giordano, and H. Claussen, "Operating massive MIMO in unlicensed bands for enhanced coexistence and spatial reuse," IEEE J. Sel. Areas Commun., vol. 35, no. 6, pp. 1282-1293, Jun. 2017.
A. Garcia-Rodriguez, G. Geraci, L. G. Giordano, A. Bonfante, M. Ding, and D. Lopez-Perez, "Massive MIMO unlicensed: A new approach to dynamic spectrum access," IEEE Commun. Mag., vol. 56, no. 6, pp. 186-192, Jun. 2018.
D. López-Pérez et al., "On the downlink performance of UAV communications in dense cellular networks," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2018, pp. 1-7.
C. D'Andrea, A. Garcia-Rodriguez, G. Geraci, L. Galati Giordano, and S. Buzzi, "Cell-free massive MIMO for UAV communications," in Proc. IEEE Int. Conf. Commun. Workshops (ICC Workshops), 2019, pp. 1-6.
C. D'Andrea, A. Garcia-Rodriguez, G. Geraci, L. G. Giordano, and S. Buzzi, "Analysis of UAV communications in cell-free massive MIMO systems," IEEE Open J. Commun. Soc., vol. 1, pp. 133-147, 2020.
R. Nikbakht and A. Lozano, "Uplink fractional power control for cellfree wireless networks," in Proc. IEEE Int. Conf. Commun. (ICC), 2019, pp. 1-5.
R. Nikbakht, R. Mosayebi, and A. Lozano, "Uplink fractional power control and downlink power allocation for cell-free networks," IEEE Wireless Commun. Lett., vol. 9, no. 6, pp. 774-777, Jun. 2020.
A. Lozano, "Interplay of spectral efficiency, power and doppler spectrum for reference-signal-assisted wireless communication," IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 5020-5029, Dec. 2008.
G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger, and E. G. Larsson, "Ubiquitous cell-free massive MIMO communications," EURASIP J. Wireless Commun. Netw., vol. 197, no. 1, 2019.
S. Perlman and A. Forenza, "An introduction to pCell," Artemis Netw. LLC, Mountain View, CA, USA, Rep., 2015. [Online]. Available: http://www.rearden.com/artemis/An-Introduction-to-pCell-White-Paper-150224.pdf
E. Björnson and L. Sanguinetti, "Making cell-free massive MIMO competitive with MMSE processing and centralized implementation," IEEE Trans. Wireless Commun., vol. 19, no. 1, pp. 77-90, Jan. 2020.
M. Attarifar, A. Abbasfar, and A. Lozano, "Subset MMSE receivers for cell-free networks," IEEE Trans. Wireless Commun., vol. 19, no. 6, pp. 4183-4194, Jun. 2020.
E. Björnson and L. Sanguinetti, "Scalable cell-free massive MIMO systems," IEEE Trans. Commun., vol. 68, no. 7, pp. 4247-4261, Jul. 2020.
M. Attarifar, A. Abbasfar, and A. Lozano, "Modified conjugate beamforming for cell-free massive MIMO," IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 616-619, Apr. 2019.
M. M. Mojahedian, R. Mosayebi, and A. Lozano, "Pseudo-inverse vs generalized inverse for C-RAN downlink precoding," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1-6.
G. Interdonato, H. Q. Ngo, and E. G. Larsson, "Enhanced normalized conjugate beamforming for cell-free massive MIMO," IEEE Trans. Commun., vol. 69, no. 5, pp. 2863-2877, May 2021.
E. Nayebi, A. Ashikhmin, T. Marzetta, H. Yang, and B. Rao, "Precoding and power optimization in cell-free massive MIMO systems," IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4445-4459, Jul. 2017.
R. Nikbakht, A. Jonsson, and A. Lozano, "Unsupervised learning for C-RAN power control and power allocation," IEEE Commun. Lett., vol. 25, no. 3, pp. 687-691, Mar. 2021.
M. Valenti, S. Talarico, and P. Rost, "The role of computational outage in dense cloud-based centralized radio access networks," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2014, pp. 1466-1472.
W. Xia, V. Semkin, M. Mezzavilla, G. Loianno, and S. Rangan, "Multiarray designs for mmWave and sub-THz communication to UAVs," in Proc. IEEE Workshop Signal Process. Adv. Wireless Commun. (SPAWC), 2020, pp. 1-5.
S. Kang et al., "Millimeter-wave UAV coverage in urban environments," in Proc. IEEE Globecom, 2021, pp. 1-6.
"Github: Millimeter-Wave UAV Coverage in Urban Environments." [Online]. Available: https://github.com/sk8053/uavchanmod (Accessed: Aug. 23, 2021).
M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, "A tutorial on beam management for 3GPP NR at mmWave frequencies," IEEE Commun. Surveys Tuts., vol. 21, no. 1, pp. 173-196, 1st Quart., 2019.
W. Xia, M. Polese, M. Mezzavilla, G. Loianno, S. Rangan, and M. Zorzi, "Millimeter wave remote UAV control and communications for public safety scenarios," in Proc. 16th Annu. IEEE Int. Conf. Sens. Commun. Netw. (SECON), 2019, pp. 1-7.
"mmWave NS-3 Module." [Online]. Available: https://github.com/nyuwireless-unipd/ns3-mmwave (Accessed: Aug. 23, 2021).
M. Mezzavilla et al., "End-to-end simulation of 5G mmWave networks," IEEE Commun. Surveys Tuts., vol. 20, no. 3, pp. 2237-2263, 3rd Quart., 2018.
R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan, and M. Zorzi, "Achieving ultra-low latency in 5G millimeter wave cellular networks," IEEE Commun. Mag., vol. 55, no. 3, pp. 196-203, Mar. 2017.
S. Dutta, M. Mezzavilla, R. Ford, M. Zhang, S. Rangan, and M. Zorzi, "Frame structure design and analysis for millimeter wave cellular systems," IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1508-1522, Mar. 2017.
K. Tekbiyik, A. R. Ekti, G. K. Kurt, A. Gorcin, and H. Yanikomeroglu, "A holistic investigation of terahertz propagation and channel modeling toward vertical heterogeneous networks," IEEE Commun. Mag., vol. 58, no. 11, pp. 14-20, Nov. 2020.
I. F. Akyildiz, J. Jornet, and C. Han, "Terahertz band: Next frontier for wireless communications," Phys. Commun., vol. 12, pp. 16-32, Sep. 2014.
J.-S. Jiang and M. A. Ingram, "Spherical-wave model for shortrange MIMO," IEEE Trans. Commun., vol. 53, no. 9, pp. 1534-1541, Sep. 2005.
B. Wang et al., "Spatial-wideband effect in massive MIMO with application in mmWave systems," IEEE Commun. Mag., vol. 56, no. 12, pp. 134-141, Dec. 2018.
P. F. Driessen and G. Foschini, "On the capacity formula for multiple input-multiple output wireless channels: A geometric interpretation," IEEE Trans. Commun., vol. 47, no. 2, pp. 173-176, Feb. 1999.
F. Bohagen, P. Orten, and G. E. Oien, "Design of optimal high-rank line-of-sight MIMO channels," IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1420-1425, Apr. 2007.
E. Torkildson, U. Madhow, and M. Rodwell, "Indoor millimeter wave MIMO: Feasibility and performance," IEEE Trans. Wireless Commun., vol. 10, no. 12, pp. 4150-4160, Dec. 2011.
H. Do, S. Cho, J. Park, H.-J. Song, N. Lee, and A. Lozano, "Terahertz line-of-sight MIMO communication: Theory and practical challenges," IEEE Commun. Mag., vol. 59, no. 3, pp. 104-109, Mar. 2021.
H. Do, N. Lee, and A. Lozano, "Reconfigurable ULAs for line-of-sight MIMO transmission," 2020, arXiv:2004.12039v1.
D. Xu, Y. Sun, D. W. K. Ng, and R. Schober, "Multiuser MISO UAV communications in uncertain environments with no-fly zones: Robust trajectory and resource allocation design," IEEE Trans. Commun., vol. 68, no. 5, pp. 3153-3172, May 2020.
M. Ryll, H. H. Bülthoff, and P. R. Giordano, "A novel overactuated quadrotor unmanned aerial vehicle: Modeling, control, and experimental validation," IEEE Trans. Control Syst. Technol., vol. 23, no. 2, pp. 540-556, Mar. 2015.
M. Banagar, H. S. Dhillon, and A. F. Molisch, "Impact of UAV wobbling on the air-to-ground wireless channel," IEEE Trans. Veh. Technol., vol. 69, no. 11, pp. 14025-14030, Nov. 2020.
V. Semkin et al., "Lightweight UAV-based measurement system for air-to-ground channels at 28 GHz," in Proc. IEEE PIMRC, 2021, pp. 848-853.
H.-S. Lee and C. G. Sodini, "Analog-to-digital converters: Digitizing the analog world," Proc. IEEE, vol. 96, no. 2, pp. 323-334, Feb. 2008.
M. Polese, L. Bertizzolo, L. Bonati, A. Gosain, and T. Melodia, "An experimental mmWave channel model for UAV-to-UAV communications," in Proc. 4th ACM Workshop Millimeter Wave Netw. Sens. Syst. (mmNets), 2020, pp. 1-6.
S. G. Sanchez, S. Mohanti, D. Jaisinghani, and K. R. Chowdhury, "Millimeter-wave base stations in the sky: An experimental study of UAV-to-ground communications," IEEE Trans. Mobile Comput., vol. 21, no. 2, pp. 644-662, Feb. 2022.
H. Shakhatreh, W. Malkawi, A. Sawalmeh, M. Almutiry, and A. Alenezi, "Modeling ground-to-air path loss for millimeter wave UAV networks," 2021, arXiv:2101.12024.
R. Kovalchukov et al., "Analyzing effects of directionality and random heights in drone-based mmWave communication," IEEE Trans. Veh. Technol., vol. 67, no. 10, pp. 10064-10069, Oct. 2018.
M. T. Dabiri, H. Safi, S. Parsaeefard, and W. Saad, "Analytical channel models for millimeter wave UAV networks under hovering fluctuations," 2019, arXiv:1905.01477.
M. Gapeyenko, V. Petrov, D. Moltchanov, S. Andreev, N. Himayat, and Y. Koucheryavy, "Flexible and reliable UAV-assisted backhaul operation in 5G mmWave cellular networks," IEEE J. Sel. Areas Commun., vol. 36, no. 11, pp. 2486-2496, Nov. 2018.
K. Stocker, B. Gschwendtner, and F. Landstorfer, "Neural network approach to prediction of terrestrial wave propagation for mobile radio," IEE Proc. H Microw. Opt. Antennas, vol. 140, no. 4, pp. 315-320, 1993.
P.-R. Chang and W.-H. Yang, "Environment-adaptation mobile radio propagation prediction using radial basis function neural networks," IEEE Trans. Veh. Technol., vol. 46, no. 1, pp. 155-160, Feb. 1997.
L. Bai et al., "Predicting wireless mmWave massive MIMO channel characteristics using machine learning algorithms," Wireless Commun. Mobile Comput., vol. 2018, 2018, Art. no. 9783863.
J. Huang et al., "A big data enabled channel model for 5G wireless communication systems," IEEE Trans. Big Data, vol. 6, no. 2, pp. 211-222, Jun. 2020.
X. Zhao et al., "Playback of 5G and beyond measured MIMO channels by an ANN-based modeling and simulation framework," IEEE J. Sel. Areas Commun., vol. 38, no. 9, pp. 1945-1954, Sep. 2020.
E. Ostlin, H.-J. Zepernick, and H. Suzuki, "Macrocell path-loss prediction using artificial neural networks," IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2735-2747, Jul. 2010.
E. Dall'Anese, S.-J. Kim, and G. Giannakis, "Channel gain map tracking via distributed kriging," IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 1205-1211, Mar. 2011.
L. Azpilicueta, M. Rawat, K. Rawat, F. Ghannouchi, and F. Falcone, "A ray launching-neural network approach for radio wave propagation analysis in complex indoor environments," IEEE Trans. Antennas Propag., vol. 62, no. 5, pp. 2777-2786, May 2014.
M. Kasparick, R. L. G. Cavalcante, S. Valentin, S. Staánczak, and M. Yukawa, "Kernel-based adaptive online reconstruction of coverage maps with side information," IEEE Trans. Veh. Technol., vol. 65, no. 7, pp. 5461-5473, Jul. 2016.
G. P. Ferreira, L. J. Matos, and J. M. M. Silva, "Improvement of outdoor signal strength prediction in UHF band by artificial neural network," IEEE Trans. Antennas Propag., vol. 64, no. 12, pp. 5404-5410, Dec. 2016.
D. Romero, S.-J. Kim, G. Giannakis, and R. López-Valcarce, "Learning power spectrum maps from quantized power measurements," IEEE Trans. Signal Process., vol. 65, no. 10, pp. 2547-2560, May 2017.
X. Ma, J. Zhang, Y. Zhang, and Z. Ma, "Data scheme-based wireless channel modeling method: Motivation, principle and performance," J. Commun. Inf. Netw., vol. 2, no. 3, pp. 41-51, Sep. 2017.
R. Nikbakht, A. Jonsson, and A. Lozano, "Dual-kernel online reconstruction of power maps," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2018, pp. 1-5.
W. Xia et al., "Millimeter wave channel modeling via generative neural networks," in Proc. IEEE Globecom Workshops., 2020, pp. 1-6.
W. Xia et al., "Generative neural network channel modeling for Millimeter-wave UAV communication," 2020, arXiv:2012.09133.
X. Lin et al., "Mobile network-connected drones: Field trials, simulations, and design insights," IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 115-125, Sep. 2019.
J. Stanczak, I. Z. Kovacs, D. Koziol, J. Wigard, R. Amorim, and H. Nguyen, "Mobility challenges for unmanned aerial vehicles connected to cellular LTE networks," in Proc. IEEE Veh. Tech. Conf. (VTC), 2018, pp. 1-5.
A. Fakhreddine, C. Bettstetter, S. Hayat, R. Muzaffar, and D. Emini, "Handover challenges for cellular-connected drones," in Proc. 5th Workshop Micro Aerial Veh. Netw. Syst. Appl. (DroNet), 2019, pp. 9-14.
R. Amer, W. Saad, and N. Marchetti, "Mobility in the sky: Performance and mobility analysis for cellular-connected UAVs," IEEE Trans. Commun., vol. 68, no. 5, pp. 3229-3246, May 2020.
R. Amer, W. Saad, B. Galkin, and N. Marchetti, "Performance analysis of mobile cellular-connected drones under practical antenna configurations," in Proc. IEEE Int. Conf. Comm. (ICC), 2020, pp. 1-7.
S. D. Muruganathan et al., "An overview of 3GPP release-15 study on enhanced LTE support for connected drones," 2018, arXiv:2009.09477.
M. M. Azari, A. H. Arani, and F. Rosas, "Mobile cellular-connected UAVs: Reinforcement learning for sky limits," in Proc. IEEE Global Commun. Conf. Workshops (GLOBECOM Workshops), 2020, pp. 1-6.
J. Hu, H. Zhang, L. Song, Z. Han, and H. V. Poor, "Reinforcement learning for a cellular Internet of UAVs: Protocol design, trajectory control, and resource management," IEEE Wireless Commun., vol. 27, no. 1, pp. 116-123, Feb. 2020.
A. Azari, F. Ghavimi, M. Ozger, R. Jantti, and C. Cavdar, "Machine learning assisted handover and resource management for cellular connected drones," 2020, arXiv:2001.07937.
U. Challita, W. Saad, and C. Bettstetter, "Interference management for cellular-connected UAVs: A deep reinforcement learning approach," IEEE Trans. Wireless Commun., vol. 18, no. 4, pp. 2125-2140, Apr. 2019.
B. Galkin, E. Fonseca, R. Amer, L. A. DaSilva, and I. Dusparic, "REQIBA: Regression and deep Q-learning for intelligent UAV cellular user to base station association," 2020, arXiv:2010.01126.
X. Liu, M. Chen, Y. Liu, Y. Chen, S. Cui, and L. Hanzo, "Artificial intelligence aided next-generation networks relying on UAVs," IEEE Wireless Commun., vol. 28, no. 1, pp. 120-127, Feb. 2021.
R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge, MA, USA: MIT Press, 2018.
"Study on new radio (NR) to support non-terrestrial networks (release 15)," 3GPP, Sophia Antipolis, France, Rep. 38.811, Sep. 2020.
"Solutions for NR to support non-terrestrial networks (NTN) (release 16)," 3GPP, Sophia Antipolis, France, Rep. 38.821, Dec. 2019.
"Study on narrow-band Internet of Things (NB-IoT)/enhanced machine type communication (eMTC) support for non-terrestrial networks (NTN) (release 17)," 3GPP, Sophia Antipolis, France, Rep. 36.763, Mar. 2021.
"Covid in Scotland: Drones to Carry Covid Samples." BBC News. Feb. 2021. [Online]. Available: https://www.bbc.com/news/ukscotland-glasgow-west-56154503
A. Guidotti et al., "Architectures and key technical challenges for 5G systems incorporating satellites," IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 2624-2639, Mar. 2019.
E. Lagunas, C. G. Tsinos, S. K. Sharma, and S. Chatzinotas, "5G cellular and fixed satellite service spectrum coexistence in C-band," IEEE Access, vol. 8, pp. 72078-72094, 2020.
M. Shaat, E. Lagunas, A. I. Perez-Neira, and S. Chatzinotas, "Integrated terrestrial-satellite wireless backhauling: Resource management and benefits for 5G," IEEE Veh. Technol. Mag., vol. 13, no. 3, pp. 39-47, Sep. 2018.
T. X. Vu, Y. Poirier, S. Chatzinotas, N. Maturo, J. Grotz, and F. Roelens, "Modeling and implementation of 5G edge caching over satellite," Int. J. Satell. Commun. Netw., vol. 38, no. 5, pp. 395-406, 2020.
T. Hong, W. Zhao, R. Liu, and M. Kadoch, "Space-air-ground IoT network and related key technologies," IEEE Wireless Commun., vol. 27, no. 2, pp. 96-104, Apr. 2020.
O. Kodheli, S. Andrenacci, N. Maturo, S. Chatzinotas, and F. Zimmer, "An uplink UE group-based scheduling technique for 5G mMTC systems over LEO satellite," IEEE Access, vol. 7, pp. 67413-67427, 2019.
A. I. Pérez-Neira, M. Á. Vázquez, M. R. B. Shankar, S. Maleki, and S. Chatzinotas, "Signal processing for high-throughput satellites: Challenges in new interference-limited scenarios," IEEE Signal Process. Mag., vol. 36, no. 4, pp. 112-131, Jul. 2019.
J. Krivochiza et al., "End-to-end precoding validation over a live GEO satellite forward link," IEEE Access, early access, Mar. 9, 2021, doi: 10.1109/ACCESS.2021.3064980.
D. Christopoulos, S. Chatzinotas, and B. E. Ottersten, "Multicast multigroup precoding and user scheduling for frame-based satellite communications," IEEE Trans. Wireless Commun., vol. 14, no. 9, pp. 4695-4707, Sep. 2015.
M. G. Kibria, E. Lagunas, N. Maturo, H. Al-Hraishawi, and S. Chatzinotas, "Carrier aggregation in satellite communications: Impact and performance study," IEEE Open J. Commun. Soc., vol. 1, pp. 1390-1402, 2020.
A. Wang, L. Lei, E. Lagunas, A. I. Pérez-Neira, S. Chatzinotas, and B. E. Ottersten, "NOMA-enabled multi-beam satellite systems: Joint optimization to overcome offered-requested data mismatches," IEEE Trans. Veh. Technol., vol. 70, no. 1, pp. 900-913, Jan. 2021.
L. Lei, E. Lagunas, Y. Yuan, M. G. Kibria, S. Chatzinotas, and B. E. Ottersten, "Beam illumination pattern design in satellite networks: Learning and optimization for efficient beam hopping," IEEE Access, vol. 8, pp. 136655-136667, 2020.
H. Al-Hraishawi, E. Lagunas, and S. Chatzinotas, "Traffic simulator for multibeam satellite communication systems," in Proc. ASMS/SPSC Workshop, 2020, pp. 1-8.
G. Gradoni and M. D. Renzo, "End-to-end mutual-coupling-aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances," 2020, arXiv:2009.02694.
X. Qian and M. D. Renzo, "Mutual coupling and unit cell aware optimization for reconfigurable intelligent surfaces," 2020, arXiv:2011.14373.
A. Abrardo, D. Dardari, M. D. Renzo, and X. Qian, "MIMO interference channels assisted by reconfigurable intelligent surfaces: Mutual coupling aware sum-rate optimization based on a mutual impedance channel model," 2021, arXiv:2102.07155.
S. Zhang et al., "Intelligent omni-surface: Ubiquitous wireless transmission by reflective-transmissive metasurface," 2020, arXiv:2011.00765.
Q. Li, M. Wen, and M. D. Renzo, "Single-RF MIMO: From spatial modulation to metasurface-based modulation," 2020, arXiv:2009.00789.
R. Fara, D. Phan-Huy, P. Ratajczak, A. Ourir, M. D. Renzo, and J. de Rosny, "Reconfigurable intelligent surface-assisted ambient backscatter communications-Experimental assessment," 2021, arXiv:2103.08427.
A. S. Abdalla, T. F. Rahman, and V. Marojevic, "UAVs with reconfigurable intelligent surfaces: Applications, challenges, and opportunities," 2020, arXiv:2012.04775.
C. You, Z. Kang, Y. Zeng, and R. Zhang, "Enabling smart reflection in integrated air-ground wireless network: IRS meets UAV," 2021, arXiv:2103.07151.
Q. Wu et al., "5G-and-beyond networks with UAVs: From communications to sensing and intelligence," 2020, arXiv:2010.09317.
L. Yang, F. Meng, J. Zhang, M. O. Hasna, and M. D. Renzo, "On the performance of RIS-assisted dual-hop UAV communication systems," IEEE Trans. Veh. Technol., vol. 69, no. 9, pp. 10385-10390, Sep. 2020.
D. Ma, M. Ding, and M. Hassan, "Enhancing cellular communications for UAVs via intelligent reflective surface," in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2020, pp. 1-6.
Y. Cai, Z. Wei, S. Hu, D. W. K. Ng, and J. Yuan, "Resource allocation for power-efficient IRS-assisted UAV communications," in Proc. IEEE Int. Conf. Comm. Workshops (ICC Workshops), 2020, pp. 1-7.
T. Shafique, H. Tabassum, and E. Hossain, "Optimization of wireless relaying with flexible UAV-borne reflecting surfaces," IEEE Trans. Commun., vol. 69, no. 1, pp. 309-325, Jan. 2021.
A. Ranjha and G. Kaddoum, "URLLC facilitated by mobile UAV relay and RIS: A joint design of passive beamforming, blocklength, and UAV positioning," IEEE Internet Things J., vol. 8, no. 6, pp. 4618-4627, Mar. 2021.
M. Al-Jarrah, A. Al-Dweik, E. Alsusa, Y. Iraqi, and M.-S. Alouini, "On the performance of IRS-assisted multi-layer UAV communications with imperfect phase compensation," in IEEE Trans. Commun., vol. 69, no. 12, pp. 8551-8568, Dec. 2021.
H. Lu, Y. Zeng, S. Jin, and R. Zhang, "Aerial intelligent reflecting surface: Joint placement and passive beamforming design with 3D beam flattening," 2020, arXiv:2007.13295.
X. Mu, Y. Liu, L. Guo, J. Lin, and H. V. Poor, "Intelligent reflecting surface enhanced multi-UAV NOMA networks," 2021, arXiv:2101.09145.
M. Di Renzo and J. Song, "Reflection probability in wireless networks with metasurface-coated environmental objects: An approach based on random spatial processes," EURASIP J. Wireless Commun. Netw., vol. 99, Apr. 2019.
S. Li, B. Duo, X. Yuan, Y.-C. Liang, and M. D. Renzo, "Reconfigurable intelligent surface assisted UAV communication: Joint trajectory design and passive beamforming," IEEE Wireless Commun. Lett., vol. 9, no. 5, pp. 716-720, May 2020.
J. Li and J. Liu, "Sum rate Maximization via reconfigurable intelligent surface in UAV communication: Phase shift and trajectory optimization," in Proc. IEEE/CIC Int. Conf. Commun. (ICCC), 2020, pp. 124-129.
L. Ge, P. Dong, H. Zhang, J. Wang, and X. You, "Joint beamforming and trajectory optimization for intelligent reflecting surfaces-assisted UAV communications," IEEE Access, vol. 8, pp. 78702-78712, 2020.
M. Hua, L. Yang, Q. Wu, C. Pan, C. Li, and A. L. Swindlehurst, "UAV-assisted intelligent reflecting surface symbiotic radio system," 2020, arXiv:2007.14029.
Y. Pan, K. Wang, C. Pan, H. Zhu, and J. Wang, "UAV-assisted and intelligent reflecting surfaces-supported terahertz communications," 2020, arXiv:2010.14223.
Z. Wei et al., "Sum-rate maximization for IRS-assisted UAV OFDMA communication systems," IEEE Trans. Wireless Commun., vol. 20, no. 4, pp. 2530-2550, Apr. 2021.
A. Zappone, M. D. Renzo, and M. Debbah, "Wireless networks design in the era of deep learning: Model-based, AI-based, or both?," IEEE Trans. Commun., vol. 67, no. 10, pp. 7331-7376, Oct. 2019.
A. Zappone, M. D. Renzo, M. Debbah, T. T. Lam, and X. Qian, "Model-aided wireless artificial intelligence: Embedding expert knowledge in deep neural networks for wireless system optimization," IEEE Veh. Technol. Mag., vol. 14, no. 3, pp. 60-69, Sep. 2019.
H. Gacanin and M. D. Renzo, "Wireless 2.0: Towards an intelligent radio environment empowered by reconfigurable meta-surfaces and artificial intelligence," 2020, arXiv:2002.11040.
X. Cao et al., "Reconfigurable intelligent surface-assisted aerial-terrestrial communications via multi-task learning," 2021, arXiv:2104.06758.
Q. Zhang, W. Saad, and M. Bennis, "Reflections in the sky: Millimeter wave communication with UAV-carried intelligent reflectors," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2019, pp. 1-6.
M. Samir, M. Elhattab, C. Assi, S. Sharafeddine, and A. Ghrayeb, "Optimizing age of information through aerial reconfigurable intelligent surfaces: A deep reinforcement learning approach," 2020, arXiv:2011.04817.
L. Wang, K. Wang, C. Pan, W. Xu, and N. Aslam, "Joint trajectory and passive Beamforming design for intelligent reflecting surface-aided UAV communications: A deep reinforcement learning approach," 2020, arXiv:2007.08380.
X. Lin, J. G. Andrews, and A. Ghosh, "Spectrum sharing for deviceto-device communication in cellular networks," IEEE Trans. Wireless Commun., vol. 13, no. 12, pp. 6727-6740, Dec. 2014.
A. Asadi, Q. Wang, and V. Mancuso, "A survey on device-to-device communication in cellular networks," IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 1801-1819, 4th Quart., 2014.
G. George, R. K. Mungara, and A. Lozano, "An analytical framework for device-to-device communication in cellular networks," IEEE Trans. Wireless Commun., vol. 14, no. 11, pp. 6297-6310, Nov. 2015.
Y. J. Chun, S. L. Cotton, H. S. Dhillon, A. Ghrayeb, and M. O. Hasna, "A stochastic geometric analysis of device-to-device communications operating over generalized fading channels," IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4151-4165, Jul. 2017.
M. N. Tehrani, M. Uysal, and H. Yanikomeroglu, "Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions," IEEE Commun. Mag., vol. 52, no. 5, pp. 86-92, May 2014.
J. Liu, N. Kato, J. Ma, and N. Kadowaki, "Device-to-device communication in LTE-advanced networks: A survey," IEEE Commun. Surveys Tuts., vol. 17, no. 4, pp. 1923-1940, 4th Quart., 2014.
D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, S. Li, and G. Feng, "Deviceto-device communications in cellular networks," IEEE Commun. Mag., vol. 52, no. 4, pp. 49-55, Apr. 2014.
X. Lin, J. G. Andrews, A. Ghosh, and R. Ratasuk, "An overview of 3GPP device-to-device proximity services," IEEE Commun. Mag., vol. 52, no. 4, pp. 40-48, Apr. 2014.
J. F. Whitehead, "Signal-level-based dynamic power control for cochannel interference management," in Proc. IEEE Veh. Technol. Conf., 1993, pp. 499-502.
C. U. Castellanos et al., "Performance of uplink fractional power control in UTRAN LTE," in Proc. IEEE Veh. Tech. Conf. (VTC), 2008, pp. 2517-2521.
P. Baracca, L. G. Giordano, A. Garcia-Rodriguez, G. Geraci, and D. López-Pérez, "Downlink performance of uplink fractional power control in 5G massive MIMO systems," in Proc. IEEE Globecom, 2018, pp. 1-7.
M. M. Azari, G. Geraci, A. Garcia-Rodriguez, and S. Pollin, "Spectrum sharing strategies for UAV-to-UAV cellular communications," in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1-6.
M. M. Azari, G. Geraci, A. Garcia-Rodriguez, and S. Pollin, "Cellular UAV-to-UAV communications," in Proc. IEEE Int. Symp. Pers. Indoor Mobile Radio Commun. (PIMRC), 2019, pp. 1-7.
M. M. Azari, G. Geraci, A. Garcia-Rodriguez, and S. Pollin, "UAVto-UAV communications in cellular networks," IEEE Trans. Wireless Commun., vol. 19, no. 9, pp. 6130-6144, Sep. 2020.