Article (Périodiques scientifiques)
Bayesian Poisson Factorization with SideInformation for User Interest Prediction inHierarchical Edge-Caching Systems
Mehrizi, Sajad; CHATZINOTAS, Symeon
2022In IEEE Open Journal of the Communications Society, 3, p. 508 - 517
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
feature_based_MF_v7.pdf
Postprint Éditeur (677.33 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Edge-caching is an effective solution to cope withthe unprecedented data traffic growth by storing contents inthe vicinity of end-users. In this paper, we formulate a hier-archical caching policy where the end-users and cellular basestation (BS) are equipped with limited cache capacity with theobjective of minimizing the total data traffic load in the network.The caching policy is a nonlinear combinatorial programmingproblem and difficult to solve. To tackle the issue, we design aheuristic algorithm as an approximate solution which can besolved efficiently. Moreover, to proactively serve the users, itis of high importance to extract useful information from datarequests and predict user interest about contents. In practice,the data often containimplicit feedbackfrom users which isquite noisy and complicates the reliable prediction of userinterest. In this regard, we introduce a Bayesian Poisson matrixfactorization model which utilizes the available side informationabout contents to effectively filter out the noise in the data andprovide accurate prediction. Subsequently, we design an efficientMarkov chain Monte Carlo (MCMC) method to perform theposterior approximation. Finally, a real-world dataset is appliedto the proposed proactive caching-prediction scheme and ourresults show significant improvement over several commonly-used methods. For example, when the BS and the users havecaches with storage of25%and10%of the total contents sizerespectively, our approach yields around8%improvement withrespect to the state-of-the-art approach in terms of cachingperformance.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Mehrizi, Sajad
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Bayesian Poisson Factorization with SideInformation for User Interest Prediction inHierarchical Edge-Caching Systems
Date de publication/diffusion :
14 mars 2022
Titre du périodique :
IEEE Open Journal of the Communications Society
eISSN :
2644-125X
Maison d'édition :
IEEE
Volume/Tome :
3
Pagination :
508 - 517
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Projet FnR :
FNR11691338 - Proactive Edge Caching For Content Delivery Networks Powered By Hybrid Satellite/Terrestrial Backhauling, 2017 (01/07/2018-31/12/2021) - Bjorn Ottersten
Disponible sur ORBilu :
depuis le 13 décembre 2022

Statistiques


Nombre de vues
92 (dont 1 Unilu)
Nombre de téléchargements
49 (dont 0 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
0
citations WoS
 
1

Bibliographie


Publications similaires



Contacter ORBilu