Article (Périodiques scientifiques)
Defeating Super-Reactive Jammers WithDeception Strategy: Modeling, SignalDetection, and Performance Analysis
Van Huynh, Nguyen; Nguyen, Diep N.; Thai Hoang, Dinh et al.
2022In IEEE Transactions on Wireless Communications, 21 (9), p. 7374 - 7390
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Draft_TWC.pdf
Postprint Éditeur (945.85 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Jamming; Backscatter; Ratio transmitters
Résumé :
This paper aims to develop a novel framework to defeat a super-reactive jammer, one of the mostdifficult jamming attacks to deal with in practice. Specifically, the jammer has an unlimited power budgetand is equipped with the self-interference suppression capability to simultaneously attack and listen tothe transmitter’s activities. Consequently, dealing with super-reactive jammers is very challenging. Thus,we introduce a smart deception mechanism to attract the jammer to continuously attack the channel andthen leverage jamming signals to transmit data based on the ambient backscatter communication whichis resilient to radio interference/jamming. To decode the backscattered signals, the maximum likelihood(ML) detector can be adopted. However, the method is notorious for its high computational complexityand require a specific mathematical model for the communication system. Hence, we propose a deeplearning-based detector that can dynamically adapt to any channel and noise distributions. With the LongShort-Term Memory network, our detector can learn the received signals’ dependencies to achieve theperformance close to that of the optimal ML detector. Through simulation and theoretical results, wedemonstrate that with proposed approaches, the more power the jammer uses to attack the channel, thebetter bit error rate performance we can achieve
Disciplines :
Sciences informatiques
Ingénierie électrique & électronique
Auteur, co-auteur :
Van Huynh, Nguyen;  University of Technology Sydney
Nguyen, Diep N.;  University of Technology Sydney
Thai Hoang, Dinh;  University of Technology Sydney
VU, Thang Xuan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Dutkiewicz, Eryk;  University of Technology Sydney
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Defeating Super-Reactive Jammers WithDeception Strategy: Modeling, SignalDetection, and Performance Analysis
Date de publication/diffusion :
16 mars 2022
Titre du périodique :
IEEE Transactions on Wireless Communications
ISSN :
1536-1276
eISSN :
1558-2248
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
Volume/Tome :
21
Fascicule/Saison :
9
Pagination :
7374 - 7390
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 13 décembre 2022

Statistiques


Nombre de vues
179 (dont 7 Unilu)
Nombre de téléchargements
131 (dont 4 Unilu)

citations Scopus®
 
19
citations Scopus®
sans auto-citations
15
citations OpenAlex
 
23
citations WoS
 
15

Bibliographie


Publications similaires



Contacter ORBilu