[en] Exchange operator formalism describes many-body integrable systems using phase-space variables involving an exchange operator that acts on any pair of particles. We establish an equivalence between models described by exchange operator formalism and the complete infinite family of parent Hamiltonians describing quantum many-body models with ground states of Jastrow form. This makes it possible to identify the invariants of motion for any model in the family and establish its integrability, even in the presence of an external potential. Using this construction we establish the integrability of the long-range Lieb-Liniger model, describing bosons in a harmonic trap and subject to contact and Coulomb interactions in one dimension.We further identify a variety of models exemplifying the integrability of Hamiltonians in this family.
Disciplines :
Physique
Auteur, co-auteur :
YANG, Jing ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
DEL CAMPO ECHEVARRIA, Adolfo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
One-Dimensional Quantum Systems with Ground State of Jastrow Form Are Integrable
J. Dziarmaga, Adv. Phys. 59, 1063 (2010). ADPHAH 0001-8732 10.1080/00018732.2010.514702
T. Mori, T. N. Ikeda, E. Kaminishi, and M. Ueda, J. Phys. B 51, 112001 (2018). JPAPEH 0953-4075 10.1088/1361-6455/aabcdf
M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, Rev. Mod. Phys. 83, 1405 (2011). RMPHAT 0034-6861 10.1103/RevModPhys.83.1405
X.-W. Guan, M. T. Batchelor, and C. Lee, Rev. Mod. Phys. 85, 1633 (2013). RMPHAT 0034-6861 10.1103/RevModPhys.85.1633
M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University Press, Cambridge, England, 1999).
M. Gaudin, The Bethe Wavefunction, edited by J.-S. Caux (Cambridge University Press, Cambridge, England, 2014).
A. P. Polychronakos, Phys. Rev. Lett. 69, 703 (1992). PRLTAO 0031-9007 10.1103/PhysRevLett.69.703
A. P. Polychronakos, J. Phys. A 39, 12793 (2006). JPHAC5 0305-4470 10.1088/0305-4470/39/41/S07
L. Lapointe and L. Vinet, Commun. Math. Phys. 178, 425 (1996). CMPHAY 0010-3616 10.1007/BF02099456
H. Ujino and M. Wadati, J. Phys. Soc. Jpn. 65, 653 (1996). JUPSAU 0031-9015 10.1143/JPSJ.65.653
C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967). PRLTAO 0031-9007 10.1103/PhysRevLett.19.1312
R. J. Baxter, Phil. Trans. R. Soc. A 289, 315 (1978). PTRMAD 1364-503X 10.1098/rsta.1978.0062
V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge, England, 1997).
B. Sutherland, Beautiful Models (World Scientific, Singapore, 2004).
B. Sutherland, Phys. Rev. Lett. 75, 1248 (1995). PRLTAO 0031-9007 10.1103/PhysRevLett.75.1248
J.-S. Caux and J. Mossel, J. Stat. Mech. (2011) P02023. JSMTC6 1742-5468 10.1088/1742-5468/2011/02/p02023
H. Ujino and M. Wadati, J. Phys. Soc. Jpn. 64, 4121 (1995). JUPSAU 0031-9015 10.1143/JPSJ.64.4121
A. P. Polychronakos, Nucl. Phys. B961, 115243 (2020). NUPBBO 0550-3213 10.1016/j.nuclphysb.2020.115243
A. Bijl, Physica (Utrecht) 7, 869 (1940). PHYSAG 0031-8914 10.1016/0031-8914(40)90166-5
R. B. Dingle, Lond. Edinb. Dublin Philos. Mag. J. Sci. 40, 573 (1949). 10.1080/14786444908521743
R. Jastrow, Phys. Rev. 98, 1479 (1955). PHRVAO 0031-899X 10.1103/PhysRev.98.1479
F. Calogero, J. Math. Phys. (N.Y.) 12, 419 (1971). JMAPAQ 0022-2488 10.1063/1.1665604
B. Sutherland, J. Math. Phys. (N.Y.) 12, 246 (1971). JMAPAQ 0022-2488 10.1063/1.1665584
B. Sutherland, Phys. Rev. A 4, 2019 (1971). PLRAAN 0556-2791 10.1103/PhysRevA.4.2019
F. Calogero and C. Marchioro, J. Math. Phys. (N.Y.) 14, 182 (1973). JMAPAQ 0022-2488 10.1063/1.1666291
P. J. Gambardella, J. Math. Phys. (N.Y.) 16, 1172 (1975). JMAPAQ 0022-2488 10.1063/1.522651
A. del Campo, Phys. Rev. Res. 2, 043114 (2020). PPRHAI 2643-1564 10.1103/PhysRevResearch.2.043114
M. Beau and A. del Campo, SciPost Phys. Core 4, 30 (2021). 10.21468/SciPostPhysCore.4.4.030
C. L. Kane, S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B 43, 3255 (1991). PRBMDO 0163-1829 10.1103/PhysRevB.43.3255
F. Calogero, Lett. Nuovo Cimento 13, 411 (1975). NCLTAX 0024-1318 10.1007/BF02790495
L. Šamaj and Z. Bajnok, Introduction to the Statistical Physics of Integrable Many-Body Systems (Cambridge University Press, Cambridge, England, 2013).
T. Kinoshita, T. Wenger, and D. S. Weiss, Science 305, 1125 (2004). SCIEAS 0036-8075 10.1126/science.1100700
B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Nature (London) 429, 277 (2004). NATUAS 0028-0836 10.1038/nature02530
M. Girardeau, J. Math. Phys. (N.Y.) 1, 516 (1960). JMAPAQ 0022-2488 10.1063/1.1703687
M. D. Girardeau, E. M. Wright, and J. M. Triscari, Phys. Rev. A 63, 033601 (2001). PLRAAN 1050-2947 10.1103/PhysRevA.63.033601
M. D. Girardeau and A. Minguzzi, Phys. Rev. Lett. 99, 230402 (2007). PRLTAO 0031-9007 10.1103/PhysRevLett.99.230402
M. Girardeau, H. Nguyen, and M. Olshanii, Opt. Commun. 243, 3 (2004). OPCOB8 0030-4018 10.1016/j.optcom.2004.09.079
N. Kawakami, J. Phys. Soc. Jpn. 62, 4163 (1993). JUPSAU 0031-9015 10.1143/JPSJ.62.4163
K. Vacek, A. Okiji, and N. Kawakami, J. Phys. A 27, L201 (1994). JPHAC5 0305-4470 10.1088/0305-4470/27/7/002
N. Gurappa and P. K. Panigrahi, Phys. Rev. B 59, R2490 (1999). PRBMDO 0163-1829 10.1103/PhysRevB.59.R2490
M. Olshanii, Phys. Rev. Lett. 81, 938 (1998). PRLTAO 0031-9007 10.1103/PhysRevLett.81.938
E. H. Lieb, R. Seiringer, and J. Yngvason, Phys. Rev. Lett. 91, 150401 (2003). PRLTAO 0031-9007 10.1103/PhysRevLett.91.150401
J. B. McGuire, J. Math. Phys. (N.Y.) 5, 622 (1964). JMAPAQ 0022-2488 10.1063/1.1704156
E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). PHRVAO 0031-899X 10.1103/PhysRev.130.1605
E. H. Lieb, Phys. Rev. 130, 1616 (1963). PHRVAO 0031-899X 10.1103/PhysRev.130.1616
M. Beau, S. M. Pittman, G. E. Astrakharchik, and A. del Campo, Phys. Rev. Lett. 125, 220602 (2020). PRLTAO 0031-9007 10.1103/PhysRevLett.125.220602
B. Sutherland, J. Math. Phys. (N.Y.) 12, 251 (1971). JMAPAQ 0022-2488 10.1063/1.1665585
J. Moser, Adv. Math. 16, 197 (1975). ADMTA4 0001-8708 10.1016/0001-8708(75)90151-6
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.129.150601 for details about the properties of the exchange operators, the projection operator to the bosonic and fermionic subspaces, derivations of Eq. (3), proof of integrability, and a user guide to construct one-dimensional integrable models as well as various examples, which includes Ref. [50] that does not appear in the reference section of the main text.
J. W. Negele and H. Orland, Quantum Many-Particle Systems (Perseus Books, Reading, MA, 1998).
A. Kundu, Phys. Rev. Lett. 83, 1275 (1999). PRLTAO 0031-9007 10.1103/PhysRevLett.83.1275
M. D. Girardeau, Phys. Rev. Lett. 97, 100402 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.97.100402
M. T. Batchelor, X.-W. Guan, and N. Oelkers, Phys. Rev. Lett. 96, 210402 (2006). PRLTAO 0031-9007 10.1103/PhysRevLett.96.210402
F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267 (1995). PRPLCM 0370-1573 10.1016/0370-1573(94)00080-M
This observation was put forward first by Polychronakos [7], using a heuristic locality argument. However, we emphasize the argument misses an important ingredient, the permutation invariance. In [49], we give a formal proof inspired by the coordinate Bethe ansatz [6,31].
M. Beau (unpublished).
G. E. Astrakharchik, J. Boronat, J. Casulleras, and S. Giorgini, Phys. Rev. Lett. 95, 190407 (2005). PRLTAO 0031-9007 10.1103/PhysRevLett.95.190407
G. Carleo, L. Cevolani, L. Sanchez-Palencia, and M. Holzmann, Phys. Rev. X 7, 031026 (2017). PRXHAE 2160-3308 10.1103/PhysRevX.7.031026
S. R. Jain and A. Khare, Phys. Lett. A 262, 35 (1999). PYLAAG 0375-9601 10.1016/S0375-9601(99)00637-4
S. M. Pittman, M. Beau, M. Olshanii, and A. del Campo, Phys. Rev. B 95, 205135 (2017). PRBMDO 2469-9950 10.1103/PhysRevB.95.205135