[en] Given the evolution of an arbitrary open quantum system, we formulate a general and unambiguous method to separate the internal energy change of the system into an entropy-related contribution and a part causing no entropy change, identified as heat and work, respectively. We also demonstrate that heat and work admit geometric and dynamical descriptions by developing a universal dynamical equation for the given trajectory of the system. The dissipative and coherent parts of this equation contribute exclusively to heat and work, where the specific role of a work contribution from a counterdiabatic drive is underlined. Next we define an expression for the irreversible entropy production of the system which does not have explicit dependence on the properties of the ambient environment; rather, it depends on a set of the system's observables excluding its Hamiltonian and is independent of internal energy change. We illustrate our results with three examples.
Disciplines :
Physics
Author, co-author :
Alipour, S.; QTF Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
Rezakhani, A. T.; Department of Physics, Sharif University of Technology, Tehran 14588, Iran
CHENU, Aurélia ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
DEL CAMPO ECHEVARRIA, Adolfo ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Ala-Nissila, T.; QTF Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland ; Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
External co-authors :
yes
Language :
English
Title :
Entropy-based formulation of thermodynamics in arbitrary quantum evolution
J. Gemmer, M. Michel, and G. Mahler, Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems (Springer, Berlin, 2009).
Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer International, Cham, Swtizerland, 2018).
S. Deffner and S. Campbell, Quantum Thermodynamics-An Introduction to the Thermodynamics of Quantum Information (Morgan & Claypool, San Rafael, CA, 2019).
R. Kosloff, Quantum thermodynamics: A dynamical viewpoint, Entropy 15, 2100 (2013) 1099-4300 10.3390/e15062100.
J. Goold, M. Huber, A. Riera, L. del Rio, and P. Skrzypczyk, The role of quantum information in thermodynamics-a topical review, J. Phys. A: Math. Theor. 49, 143001 (2016) 1751-8113 10.1088/1751-8113/49/14/143001.
T. D. Kieu, The Second Law, Maxwell's Demon, and Work Derivable from Quantum Heat Engines, Phys. Rev. Lett. 93, 140403 (2004) 0031-9007 10.1103/PhysRevLett.93.140403.
F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, and S. Wehner, The second laws of quantum thermodynamics, Proc. Natl. Acad. Sci. U. S. A. 112, 3275 (2015) 0027-8424 10.1073/pnas.1411728112.
L. Masanes and J. Oppenheim, A general derivation and quantification of the third law of thermodynamics, Nat. Commun. 8, 14538 (2017) 2041-1723 10.1038/ncomms14538.
H. Hossein-Nejad, E. J. O'Reilly, and A. Olaya-Castro, Work, heat and entropy production in bipartite quantum systems, New J. Phys. 17, 075014 (2015) 1367-2630 10.1088/1367-2630/17/7/075014.
S. Alipour, F. Benatti, F. Bakhshinezhad, M. Afsary, S. Marcantoni, and A. T. Rezakhani, Correlations in quantum thermodynamics: Heat, work, and entropy production, Sci. Rep. 6, 35568 (2016) 2045-2322 10.1038/srep35568.
S. Marcantoni, S. Alipour, F. Benatti, R. Floreanini, and A. T. Rezakhani, Entropy production and non-Markovian dynamical maps, Sci. Rep. 7, 12447 (2017) 2045-2322 10.1038/s41598-017-12595-x.
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys. 81, 1665 (2009) 0034-6861 10.1103/RevModPhys.81.1665.
M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys. 83, 771 (2011) 0034-6861 10.1103/RevModPhys.83.771.
K. Funo, M. Ueda, and T. Sagawa, Quantum fluctuation theorems, in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (Springer International, Cham, Switzerland, 2018), p. 249.
F. Bakhshinezhad, F. Clivaz, G. Vitagliano, P. Erker, A. Rezakhani, M. Huber, and N. Friis, Thermodynamically optimal creation of correlations, J. Phys. A: Math. Theor. 52, 465303 (2019) 1751-8113 10.1088/1751-8121/ab3932.
J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, A single-atom heat engine, Science 352, 325 (2016) 0036-8075 10.1126/science.aad6320.
S. Deng, A. Chenu, P. Diao, F. Li, S. Yu, I. Coulamy, A. del Campo, and H. Wu, Superadiabatic quantum friction suppression in finite-time thermodynamics, Sci. Adv. 4, eaar5909 (2018) 2375-2548 10.1126/sciadv.aar5909.
G. Maslennikov, S. Ding, R. Hablützel, J. Gan, A. Roulet, S. Nimmrichter, J. Dai, V. Scarani, and D. Matsukevich, Quantum absorption refrigerator with trapped ions, Nat. Commun. 10, 202 (2019) 2041-1723 10.1038/s41467-018-08090-0.
J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental Characterization of a Spin Quantum Heat Engine, Phys. Rev. Lett. 123, 240601 (2019) 0031-9007 10.1103/PhysRevLett.123.240601.
D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J. Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler, and U. G. Poschinger, A Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel, Phys. Rev. Lett. 123, 080602 (2019) 0031-9007 10.1103/PhysRevLett.123.080602.
R. Alicki, The quantum open system as a model of the heat engine, J. Phys. A: Math. Gen. 12, L103 (1979) 0305-4470 10.1088/0305-4470/12/5/007.
P. Talkner, E. Lutz, and P. Hänggi, Fluctuation theorems: Work is not an observable, Phys. Rev. E 75, 050102 (R) (2007) 1539-3755 10.1103/PhysRevE.75.050102.
J. M. G. Vilar and J. M. Rubi, Failure of the Work-Hamiltonian Connection for Free-Energy Calculations, Phys. Rev. Lett. 100, 020601 (2008) 0031-9007 10.1103/PhysRevLett.100.020601.
D. Gelbwaser-Klimovsky and A. Aspuru-Guzik, On thermodynamic inconsistencies in several photosynthetic and solar cell models and how to fix them, Chem. Sci. 8, 1008 (2017) 2041-6520 10.1039/C6SC04350J.
W. Niedenzu, M. Huber, and E. Boukobza, Concepts of work in autonomous quantum heat engines, Quantum 3, 195 (2019) 2521-327X 10.22331/q-2019-10-14-195.
R. Sampaio, S. Suomela, T. Ala-Nissila, J. Anders, and T. G. Philbin, Quantum work in the Bohmian framework, Phys. Rev. A 97, 012131 (2018) 2469-9926 10.1103/PhysRevA.97.012131.
C. Elouard, D. A. Herrera-Martí, M. Clusel, and A. Auffèves, The role of quantum measurement in stochastic thermodynamics, npj Quantum Inf. 3, 9 (2017) 2056-6387 10.1038/s41534-017-0008-4.
C. Jarzynski, Nonequilibrium work theorem for a system strongly coupled to a thermal environment, J. Stat. Mech.: Theory Exp. (2004) P09005 10.1088/1742-5468/2004/09/P09005.
M. F. Gelin and M. Thoss, Thermodynamics of a subensemble of a canonical ensemble, Phys. Rev. E 79, 051121 (2009) 1539-3755 10.1103/PhysRevE.79.051121.
M. Campisi, P. Talkner, and P. Hänggi, Fluctuation Theorem for Arbitrary Open Quantum Systems, Phys. Rev. Lett. 102, 210401 (2009) 0031-9007 10.1103/PhysRevLett.102.210401.
H. J. D. Miller and J. Anders, Energy-temperature uncertainty relation in quantum thermodynamics, Nat. Commun. 9, 2203 (2018) 2041-1723 10.1038/s41467-018-04536-7.
Á. Rivas, Strong Coupling Thermodynamics of Open Quantum Systems, Phys. Rev. Lett. 124, 160601 (2020) 0031-9007 10.1103/PhysRevLett.124.160601.
H. Spohn, Entropy production for quantum dynamical semigroups, J. Math. Phys. (Melville, NY) 19, 1227 (1978) 0022-2488 10.1063/1.523789.
C. M. Bender, D. C. Brody, and B. K. Meister, Quantum mechanical Carnot engine, J. Phys. A: Math. Gen. 33, 4427 (2000) 0305-4470 10.1088/0305-4470/33/24/302.
S. Abe, Maximum-power quantum-mechanical Carnot engine, Phys. Rev. E 83, 041117 (2011) 1539-3755 10.1103/PhysRevE.83.041117.
A. Polkovnikov, Microscopic diagonal entropy and its connection to basic thermodynamic relations, Ann. Phys. (NY) 326, 486 (2011) 0003-4916 10.1016/j.aop.2010.08.004.
Y.-H. Shi, H.-L. Shi, X.-H. Wang, M.-L. Hu, S.-Y. Liu, W.-L. Yang, and H. Fan, Quantum coherence in a quantum heat engine, J. Phys. A: Math. Theor. 53, 085301 (2020) 1751-8113 10.1088/1751-8121/ab6a6b.
S. Su, J. Chen, Y. Ma, J. Chen, and C. Sun, The heat and work of quantum thermodynamic processes with quantum coherence, Chin. Phys. B 27, 060502 (2018) 1674-1056 10.1088/1674-1056/27/6/060502.
R. Dann, A. Tobalina, and R. Kosloff, Shortcut to Equilibration of an Open Quantum System, Phys. Rev. Lett. 122, 250402 (2019) 0031-9007 10.1103/PhysRevLett.122.250402.
Z. N. Qaleh and A. T. Rezakhani, Enhancing energy transfer in quantum systems via periodic driving: Floquet master equations, Phys. Rev. A 105, 012208 (2022) 2469-9926 10.1103/PhysRevA.105.012208.
K. Funo, N. Shiraishi, and K. Saito, Speed limit for open quantum systems, New J. Phys. 21, 013006 (2019) 1367-2630 10.1088/1367-2630/aaf9f5.
D. A. Lidar and K. B. Whaley, Decoherence-free subspaces and subsystems, in Irreversible Quantum Dynamics, edited by F. Benatti and R. Floreanini (Springer, Berlin, 2003), pp. 83-120.
R. Blume-Kohout, H. K. Ng, D. Poulin, and L. Viola, Characterizing the Structure of Preserved Information in Quantum Processes, Phys. Rev. Lett. 100, 030501 (2008) 0031-9007 10.1103/PhysRevLett.100.030501.
W. Niedenzu, V. Mukherjee, A. Ghosh, A. G. Kofman, and G. Kurizki, Quantum engine efficiency bound beyond the second law of thermodynamics, Nat. Commun. 9, 165 (2018) 2041-1723 10.1038/s41467-017-01991-6.
A. E. Allahverdyan, R. Balian, and T. M. Nieuwenhuizen, Maximal work extraction from finite quantum systems, Europhys. Lett. 67, 565 (2004) 0295-5075 10.1209/epl/i2004-10101-2.
G. Manzano, Squeezed thermal reservoir as a generalized equilibrium reservoir, Phys. Rev. E 98, 042123 (2018) 2470-0045 10.1103/PhysRevE.98.042123.
J. M. Horowitz and J. M. R. Parrondo, Entropy production along nonequilibrium quantum jump trajectories, New J. Phys. 15, 085028 (2013) 1367-2630 10.1088/1367-2630/15/8/085028.
J. J. Alonso, E. Lutz, and A. Romito, Thermodynamics of Weakly Measured Quantum Systems, Phys. Rev. Lett. 116, 080403 (2016) 0031-9007 10.1103/PhysRevLett.116.080403.
H. B. Callen, Thermodynamics and Introduction to Thermostatistics (Wiley, New York, 1985).
H. Weimer, M. J. Henrich, F. Rempp, H. Schröder, and G. Mahler, Local effective dynamics of quantum systems: A generalized approach to work and heat, Europhys. Lett. 83, 30008 (2008) 0295-5075 10.1209/0295-5075/83/30008.
Y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach (McGraw-Hill, New York, 2007).
S. Alipour, A. Chenu, A. T. Rezakhani, and A. del Campo, Shortcuts to adiabaticity in driven open quantum systems: Balanced gain and loss and non-Markovian evolution, Quantum 4, 336 (2020) 2521-327X 10.22331/q-2020-09-28-336.
M. Demirplak and S. A. Rice, Adiabatic population transfer with control fields, J. Phys. Chem. A 107, 9937 (2003) 1089-5639 10.1021/jp030708a.
M. V. Berry, Transitionless quantum driving, J. Phys. A: Math. Theor. 42, 365303 (2009) 1751-8113 10.1088/1751-8113/42/36/365303.
H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, New York, 2007).
Á. Rivas and S. F. Huelga, Open Quantum Systems (Springer, Berlin, 2012).
S. Alipour, A. T. Rezakhani, A. P. Babu, K. Mølmer, M. Möttönen, and T. Ala-Nissila, Correlation-Picture Approach to Open-Quantum-System Dynamics, Phys. Rev. X 10, 041024 (2020) 2160-3308 10.1103/PhysRevX.10.041024.
Heat is associated with entropy change. Note that (Equation presented), where (Equation presented) is a resolution of the identity, (Equation presented) and (Equation presented) constitutes probabilities, and (Equation presented)is the Shannon entropy [V. Vedral, Classical Correlations and Entanglement in Quantum Measurements, Phys. Rev. Lett. 90, 050401 (2003) 10.1103/PhysRevLett.90.050401].
The optimal measurement minimizing the Shannon entropy is given by the eigenvectors of (Equation presented); (Equation presented).
S. Alipour, M. Afsary, F. Bakhshinezhad, M. Ramezani, F. Benatti, T. Ala-Nissila, and A. T. Rezakhani, Temperature in nonequilibrium quantum systems, arXiv:2105.11915.
See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevA.105.L040201 for details and further discussions.
G. T. Landi and M. Paternostro, Irreversible entropy production: From classical to quantum, Rev. Mod. Phys. 93, 035008 (2021) 10.1103/RevModPhys.93.035008.
R. Uzdin and S. Rahav, Global Passivity in Microscopic Thermodynamics, Phys. Rev. X 8, 021064 (2018) 2160-3308 10.1103/PhysRevX.8.021064.
M. Esposito, K. Lindenberg, and C. Van den Broeck, Entropy production as correlation between system and reservoir, New J. Phys. 12, 013013 (2010) 1367-2630 10.1088/1367-2630/12/1/013013.
X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity, Phys. Rev. Lett. 104, 063002 (2010) 0031-9007 10.1103/PhysRevLett.104.063002.
H. Spohn, An algebraic condition for the approach to equilibrium of an open (Equation presented)-level system, Lett. Math. Phys. 2, 33 (1977) 0377-9017 10.1007/BF00420668.
V. Bach, J. Fröhlich, and I. M. Sigal, Return to equilibrium, J. Math. Phys. (Melville, NY) 41, 3985 (2000) 0022-2488 10.1063/1.533334.
V. Cavina, A. Mari, and V. Giovannetti, Slow Dynamics and Thermodynamics of Open Quantum Systems, Phys. Rev. Lett. 119, 050601 (2017) 0031-9007 10.1103/PhysRevLett.119.050601.
A. Juan-Delgado and A. Chenu, First law of quantum thermodynamics in a driven open two-level system, Phys. Rev. A 104, 022219 (2021) 2469-9926 10.1103/PhysRevA.104.022219.
B. Ahmadi, S. Salimi, and A. S. Khorashad, Refined definitions of heat and work in quantum thermodynamics, arXiv:1912.01983.