Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Profiling the real world potential of neural network compression
LORENTZ, Joe; Hartmann, Thomas; Moawad, Assaad et al.
2022In 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS), Barcelona 1-3 August 2022
Peer reviewed
 

Documents


Texte intégral
Profiling the real world potential of neural network compression-accepted.pdf
Postprint Auteur (173.42 kB)
Télécharger

The final authenticated version is available online at https://doi.ieeecomputersociety.org/10.1109/COINS54846.2022.9854973


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
machine learning; computer vision; model compression
Résumé :
[en] Abstract—Many real world computer vision applications are required to run on hardware with limited computing power, often referred to as ”edge devices”. The state of the art in computer vision continues towards ever bigger and deeper neural networks with equally rising computational requirements. Model compression methods promise to substantially reduce the computation time and memory demands with little to no impact on the model robustness. However, evaluation of the compression is mostly based on theoretic speedups in terms of required floating-point operations. This work offers a tool to profile the actual speedup offered by several compression algorithms. Our results show a significant discrepancy between the theoretical and actual speedup on various hardware setups. Furthermore, we show the potential of model compressions and highlight the importance of selecting the right compression algorithm for a target task and hardware. The code to reproduce our experiments is available at https://hub.datathings.com/papers/2022-coins.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LORENTZ, Joe ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Hartmann, Thomas;  DataThings S.A.
Moawad, Assaad;  DataThings S.A.
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Profiling the real world potential of neural network compression
Date de publication/diffusion :
01 août 2022
Nom de la manifestation :
2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS)
Date de la manifestation :
from 01.08.2022 to 03.08.2022
Titre de l'ouvrage principal :
2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS), Barcelona 1-3 August 2022
Maison d'édition :
IEEE
ISBN/EAN :
978-1-6654-8356-8
Peer reviewed :
Peer reviewed
Projet FnR :
FNR14297122 - Towards Edge-optimized Deep Learning For Explainable Quality Control, 2019 (01/01/2020-31/12/2023) - Joe Lorentz
Disponible sur ORBilu :
depuis le 12 octobre 2022

Statistiques


Nombre de vues
123 (dont 8 Unilu)
Nombre de téléchargements
134 (dont 0 Unilu)

citations Scopus®
 
0
citations Scopus®
sans auto-citations
0
citations OpenAlex
 
0

Bibliographie


Publications similaires



Contacter ORBilu