Article (Périodiques scientifiques)
Simulator-based explanation and debugging of hazard-triggering events in DNN-based safety-critical systems
FAHMY, Hazem; PASTORE, Fabrizio; BRIAND, Lionel et al.
2023In ACM Transactions on Software Engineering and Methodology
Peer reviewed vérifié par ORBi Dataset
 

Documents


Texte intégral
SimulatorBasedExplanation.pdf
Postprint Auteur (1.28 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
DNN Explanation; Search-based Testing; Functional Safety; Debugging; AI
Résumé :
[en] When Deep Neural Networks (DNNs) are used in safety-critical systems, engineers should determine the safety risks associated with failures (i.e., erroneous outputs) observed during testing. For DNNs processing images, engineers visually inspect all failure-inducing images to determine common characteristics among them. Such characteristics correspond to hazard-triggering events (e.g., low illumination) that are essential inputs for safety analysis. Though informative, such activity is expensive and error-prone. To support such safety analysis practices, we propose SEDE, a technique that generates readable descriptions for commonalities in failure-inducing, real-world images and improves the DNN through effective retraining. SEDE leverages the availability of simulators, which are commonly used for cyber-physical systems. It relies on genetic algorithms to drive simulators towards the generation of images that are similar to failure-inducing, real-world images in the test set; it then employs rule learning algorithms to derive expressions that capture commonalities in terms of simulator parameter values. The derived expressions are then used to generate additional images to retrain and improve the DNN. With DNNs performing in-car sensing tasks, SEDE successfully characterized hazard-triggering events leading to a DNN accuracy drop. Also, SEDE enabled retraining leading to significant improvements in DNN accuracy, up to 18 percentage points.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Sciences informatiques
Auteur, co-auteur :
FAHMY, Hazem ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
PASTORE, Fabrizio  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Stifter, Thomas
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Simulator-based explanation and debugging of hazard-triggering events in DNN-based safety-critical systems
Date de publication/diffusion :
27 mai 2023
Titre du périodique :
ACM Transactions on Software Engineering and Methodology
ISSN :
1049-331X
Maison d'édition :
Association for Computing Machinery (ACM), Etats-Unis
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
URL complémentaire :
Projet européen :
H2020 - 694277 - TUNE - Testing the Untestable: Model Testing of Complex Software-Intensive Systems
Projet FnR :
FNR14711346 - Functional Safety For Autonomous Systems, 2020 (01/08/2020-31/07/2023) - Fabrizio Pastore
Intitulé du projet de recherche :
BRIDGES2020/IS/14711346/FUNTASY
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 10 octobre 2022

Statistiques


Nombre de vues
246 (dont 19 Unilu)
Nombre de téléchargements
184 (dont 7 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
7
citations OpenAlex
 
11

Bibliographie


Publications similaires



Contacter ORBilu