Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
TSCom-Net: Coarse-to-Fine 3D Textured Shape Completion Network
KARADENIZ, Ahmet Serdar; ALI, Sk Aziz; KACEM, Anis et al.
2022In KARADENIZ, Ahmet Serdar; ALI, Sk Aziz; KACEM, Anis et al. (Eds.) TSCom-Net: Coarse-to-Fine 3D Textured Shape Completion Network
Peer reviewed
 

Documents


Texte intégral
2208.08768v2.pdf
Preprint Auteur (11.09 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
3D Reconstruction; Shape Completion; Texture-Inpainting; Implicit Function; Signed Distance Function
Résumé :
[en] Reconstructing 3D human body shapes from 3D partial textured scans remains a fundamental task for many computer vision and graphics applications – e.g., body animation, and virtual dressing. We propose a new neural network architecture for 3D body shape and highresolution texture completion – TSCom-Net – that can reconstruct the full geometry from mid-level to high-level partial input scans. We decompose the overall reconstruction task into two stages – first, a joint implicit learning network (SCom-Net and TCom-Net) that takes a voxelized scan and its occupancy grid as input to reconstruct the full body shape and predict vertex textures. Second, a high-resolution texture completion network, that utilizes the predicted coarse vertex textures to inpaint the missing parts of the partial ‘texture atlas’. A Thorough experimental evaluation on 3DBodyTex.V2 dataset shows that our method achieves competitive results with respect to the state-of-the-art while generalizing to different types and levels of partial shapes. The proposed method has also ranked second in the track1 of SHApe Recovery from Partial textured 3D scans (SHARP [37 , 2]) 2022 1 challenge1.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Computer Vision Imaging & Machine Intelligence (CVI²)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
KARADENIZ, Ahmet Serdar ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
ALI, Sk Aziz ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
KACEM, Anis  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
DUPONT, Elona ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > CVI2
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
TSCom-Net: Coarse-to-Fine 3D Textured Shape Completion Network
Date de publication/diffusion :
2022
Nom de la manifestation :
European Conference on Computer Vision Workshops
Lieu de la manifestation :
Tel-Aviv, Israël
Date de la manifestation :
from 23-10-2022 to 27-10-2022
Titre de l'ouvrage principal :
TSCom-Net: Coarse-to-Fine 3D Textured Shape Completion Network
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet FnR :
FNR16849599 - Feature-based Reverse Engineering Of 3d Scans, 2021 (01/05/2022-30/04/2025) - Djamila Aouada
Intitulé du projet de recherche :
FREE-3D: Feature-based Reverse Engineering Of 3D Scans
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 03 octobre 2022

Statistiques


Nombre de vues
276 (dont 44 Unilu)
Nombre de téléchargements
206 (dont 20 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
0

Bibliographie


Publications similaires



Contacter ORBilu