Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
PEELER: Learning to Effectively Predict Flakiness without Running Tests
Qin, Yihao; Wang, Shangwen; Liu, Kui et al.
2022In Proceedings of the 38th IEEE International Conference on Software Maintenance and Evolution
Peer reviewed
 

Documents


Texte intégral
ICSME_2022_Flaky_test.pdf
Preprint Auteur (729.66 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Flaky tests; Deep learning; Program dependency
Résumé :
[en] —Regression testing is a widely adopted approach to expose change-induced bugs as well as to verify the correctness/robustness of code in modern software development settings. Unfortunately, the occurrence of flaky tests leads to a significant increase in the cost of regression testing and eventually reduces the productivity of developers (i.e., their ability to find and fix real problems). State-of-the-art approaches leverage dynamic test information obtained through expensive re-execution of test cases to effectively identify flaky tests. Towards accounting for scalability constraints, some recent approaches have built on static test case features, but fall short on effectiveness. In this paper, we introduce PEELER, a new fully static approach for predicting flaky tests through exploring a representation of test cases based on the data dependency relations. The predictor is then trained as a neural network based model, which achieves at the same time scalability (because it does not require any test execution), effectiveness (because it exploits relevant test dependency features), and practicality (because it can be applied in the wild to find new flaky tests). Experimental validation on 17,532 test cases from 21 Java projects shows that PEELER outperforms the state-of-the-art FlakeFlagger by around 20 percentage points: we catch 22% more flaky tests while yielding 51% less false positives. Finally, in a live study with projects in-the-wild, we reported to developers 21 flakiness cases, among which 12 have already been confirmed by developers as being indeed flaky.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Qin, Yihao;  National University of Defense Technology, China
Wang, Shangwen;  National University of Defense Technology, China
Liu, Kui;  Huawei Software Engineering Application Technology Lab, China
Lin, Bo;  National University of Defense Technology
Wu, Hongjun;  National University of Defense Technology, China
Li, Li;  Monash University, Australia
Mao, Xiaoguang;  National University of Defense Technology, China
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > TruX
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
PEELER: Learning to Effectively Predict Flakiness without Running Tests
Date de publication/diffusion :
octobre 2022
Nom de la manifestation :
38th IEEE International Conference on Software Maintenance and Evolution
Organisateur de la manifestation :
IEEE
Lieu de la manifestation :
Limassol, Chypre
Date de la manifestation :
from 02-10-2022 to 07-10-2022
Manifestation à portée :
International
Titre de l'ouvrage principal :
Proceedings of the 38th IEEE International Conference on Software Maintenance and Evolution
Pagination :
1-12
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 949014 - NATURAL - Natural Program Repair
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 24 septembre 2022

Statistiques


Nombre de vues
218 (dont 19 Unilu)
Nombre de téléchargements
330 (dont 16 Unilu)

citations Scopus®
 
9
citations Scopus®
sans auto-citations
9

Bibliographie


Publications similaires



Contacter ORBilu