Article (Périodiques scientifiques)
Quantum machine learning corrects classical forcefields: Stretching DNA base pairs in explicit solvent
BERRYMAN, Josh; TAGHAVI, Amirhossein; MAZUR, Florian et al.
2022In Journal of Chemical Physics, 157 (6)
Peer reviewed
 

Documents


Texte intégral
5.0094727.pdf
Postprint Éditeur (5.46 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
machine learning; simulation; DNA
Résumé :
[en] In order to improve the accuracy of molecular dynamics simulations, classical forcefields are supplemented with a kernel-based machine learning method trained on quantum-mechanical fragment energies. As an example application, a potential-energy surface is generalized for a small DNA duplex, taking into account explicit solvation and long-range electron exchange–correlation effects. A long-standing problem in molecular science is that experimental studies of the structural and thermodynamic behavior of DNA under tension are not well confirmed by simulation; study of the potential energy vs extension taking into account a novel correction shows that leading classical DNA models have excessive stiffness with respect to stretching. This discrepancy is found to be common across multiple forcefields. The quantum correction is in qualitative agreement with the experimental thermodynamics for larger DNA double helices, providing a candidate explanation for the general and long-standing discrepancy between single molecule stretching experiments and classical calculations of DNA stretching. The new dataset of quantum calculations should facilitate multiple types of nucleic acid simulation, and the associated Kernel Modified Molecular Dynamics method (KMMD) is applicable to biomolecular simulations in general. KMMD is made available as part of the AMBER22 simulation software.
Centre de recherche :
ULHPC - University of Luxembourg: High Performance Computing
Disciplines :
Physique
Auteur, co-auteur :
BERRYMAN, Josh  ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
TAGHAVI, Amirhossein ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
MAZUR, Florian ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit ; Université de Lorraine > Laboratoire de Physique et Chimie Théoriques
TKATCHENKO, Alexandre ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Physics and Materials Science (DPHYMS)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Quantum machine learning corrects classical forcefields: Stretching DNA base pairs in explicit solvent
Date de publication/diffusion :
09 août 2022
Titre du périodique :
Journal of Chemical Physics
Volume/Tome :
157
Fascicule/Saison :
6
Peer reviewed :
Peer reviewed
Focus Area :
Physics and Materials Science
Projet FnR :
FNR14769845 - Broadly Applicable Methods For Van Der Waals Interactions In Molecules And Materials, 2020 (01/09/2021-31/08/2024) - Alexandre Tkatchenko
Intitulé du projet de recherche :
BroadApp
Organisme subsidiant :
FNR - Fonds National de la Recherche
Commentaire :
Associated dara is available from the NOMAD searchable online repository.
Disponible sur ORBilu :
depuis le 31 août 2022

Statistiques


Nombre de vues
285 (dont 20 Unilu)
Nombre de téléchargements
89 (dont 2 Unilu)

citations Scopus®
 
2
citations Scopus®
sans auto-citations
2
OpenCitations
 
0
citations OpenAlex
 
0
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu