Structural Health Monitoring (SHM); prestressed concrete bridges; temperature effects; static experiments; modal analysis
Résumé :
[en] An increasing number of bridges are approaching the end of their service life due to corrosion and fatigue. Damages can be detected by performing regular measurements of characteristic values and comparing them with reference state data when there is no damage in the bridge. Unfortunately, environmental factors such as temperature variations have a considerable impact on the measurements and structural properties, such as stiffness. Since these environmental effects can be in the same order as damage, it is important to quantify them and reduce their effect before damage assessment. This paper aims to establish a correct reference model by investigating the parameters that affect structural responses. Doing so enables discrimination between structural property changes caused by damage and parameters such as temperature variations, load uncertainties, and various bearings. In this regard, several static and dynamic experiments are performed on a full scale undamaged prestressed concrete beam from a demolished bridge, and the results are reported. [de] Immer mehr Brücken nähern sich aufgrund von Korrosion und Ermüdung dem Ende ihrer Nutzungsdauer. Schäden können durch regelmäßige Messung charakteristischer Größen und dem Vergleich mit Referenzdaten (z. B. Daten aus dem unbeschädigten Zustand der Brücke) festgestellt werden. Leider haben Umweltfaktoren wie Temperaturschwankungen einen erheblichen Einfluss auf die Messwerte und strukturellen Eigenschaften, wie z. B. die Steifigkeit. Da die Auswirkungen dieser Umwelteinflüsse in der gleichen Größenordnung wie Schäden liegen können, ist es wichtig, sie vor der Schadensbewertung zu quantifizieren und zu kompensieren. Ziel dieser Arbeit ist es, ein korrektes Referenzmodell zu erstellen, indem die Parameter untersucht werden, die die strukturellen Messgrößen beeinflussen. Dies ermöglicht eine Unterscheidung zwischen den durch Schäden verursachten Veränderungen der Struktureigenschaften und Parametern wie Temperaturschwankungen, Lastunsicherheiten und verschiedenen Lagerungen. Zu diesem Zweck werden mehrere statische und dynamische Experimente an einem unbeschädigten Spannbetonbalken in Originalgröße aus einer Abrissbrücke durchgeführt und die Ergebnisse vorgestellt.
Disciplines :
Ingénierie mécanique Ingénierie civile
Auteur, co-auteur :
DAKHILI, Khatereh ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Kebig, Tanja
MAAS, Stefan ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Effects of various outdoor conditions on Structural Health Monitoring (SHM) of bridges using data from Luxembourg
Date de publication/diffusion :
avril 2022
Nom de la manifestation :
7. VDI-Fachtagung Baudynamik
Lieu de la manifestation :
Würzburg, Allemagne
Date de la manifestation :
from 27-04-2022 to 28-04-2022
Titre de l'ouvrage principal :
VDI-Berichte 2379, 7. VDI-Fachtagung Baudynamik 27. und 28. April 2022, Würzburg
D. Agdas, J. A. Rice, J. R. Martinez, and I. R. Lasa, “Comparison of Visual Inspection and Structural-Health Monitoring As Bridge Condition Assessment Methods,” J. Perform. Constr. Facil., vol. 30, no. 3, p. 04015049, 2016, doi: 10.1061/(asce)cf.1943-5509.0000802.
R. Kromanis and P. Kripakaran, “Support vector regression for anomaly detection from measurement histories,” Adv. Eng. Informatics, vol. 27, no. 4, pp. 486–495, 2013, doi: 10.1016/j.aei.2013.03.002.
L. A. Jimenez-Roa, “Data-driven damage detection for bridges through vibration structural health monitoring,” University of Twente, 2020.
F. Cavadas, I. F. C. Smith, and J. Figueiras, “Damage detection using data-driven methods applied to moving-load responses,” Mech. Syst. Signal Process., vol. 39, no. 1–2, pp. 409–425, 2013, doi: 10.1016/j.ymssp.2013.02.019.
M. Vagnoli, R. Remenyte-Prescott, and J. Andrews, “Railway bridge structural health monitoring and fault detection: State-of-the-art methods and future challenges,” Struct. Heal. Monit., vol. 17, no. 4, pp. 971–1007, 2018, doi: 10.1177/1475921717721137.
J. J. Moughty and J. R. Casas, “A state of the art review of modal-based damage detection in bridges: Development, challenges, and solutions,” Appl. Sci., vol. 7, no. 5, 2017, doi: 10.3390/app7050510.
Z. H. Ding, M. Huang, and Z. R. Lu, “Structural damage detection using artificial bee colony algorithm with hybrid search strategy,” Swarm Evol. Comput., vol. 28, pp. 1–13, 2016, doi: 10.1016/j.swevo.2015.10.010.
G. Sha, M. Radzieński, M. Cao, and W. Ostachowicz, “A novel method for single and multiple damage detection in beams using relative natural frequency changes,” Mech. Syst. Signal Process., vol. 132, pp. 335–352, 2019, doi: 10.1016/j.ymssp.2019.06.027.
V. H. Nguyen, S. Schommer, S. Maas, and A. Zürbes, “Static load testing with temperature compensation for structural health monitoring of bridges,” Eng. Struct., vol. 127, pp. 700–718, 2016, doi: 10.1016/j.engstruct.2016.09.018.
V. H. Nguyen, T. Kebig, J. C. Golinval, and S. Maas, “Reduction of temperature effects for bridge health monitoring,” Proc. Int. Conf. Struct. Dyn., EURODYN, vol. 1, pp. 1195– 1204, 2020, doi: 10.47964/1120.9096.19343.
T. Kebig, V. Nguyen, M. Bender, M. Schäfer, and S. Maas, “Repeatability and precision of different static deflection measurements on a real bridge-part under outdoor conditions in view of damage detection,” 2021, https://orbilu.uni.lu/handle/10993/49207.
R. Kromanis and P. Kripakaran, “Performance of signal processing techniques for anomaly detection using a temperature-based measurement interpretation approach,” J. Civ. Struct. Heal. Monit., vol. 11, no. 1, pp. 15–34, 2021, doi: 10.1007/s13349-020-00435-y.