Article (Périodiques scientifiques)
A Machine Learning Approach for Automated Filling of Categorical Fields in Data Entry Forms
BELGACEM, Hichem; Li, Xiaochen; BIANCULLI, Domenico et al.
2023In ACM Transactions on Software Engineering and Methodology, 32 (2), p. 47:1-47:40
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
all-in-newMain.pdf
Postprint Auteur (866.94 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Form filling; Data entry forms; Machine Learning; Software data quality; User interfaces
Résumé :
[en] Users frequently interact with software systems through data entry forms. However, form filling is time-consuming and error-prone. Although several techniques have been proposed to auto-complete or pre-fill fields in the forms, they provide limited support to help users fill categorical fields, i.e., fields that require users to choose the right value among a large set of options. In this paper, we propose LAFF, a learning-based automated approach for filling categorical fields in data entry forms. LAFF first builds Bayesian Network models by learning field dependencies from a set of historical input instances, representing the values of the fields that have been filled in the past. To improve its learning ability, LAFF uses local modeling to effectively mine the local dependencies of fields in a cluster of input instances. During the form filling phase, LAFF uses such models to predict possible values of a target field, based on the values in the already-filled fields of the form and their dependencies; the predicted values (endorsed based on field dependencies and prediction confidence) are then provided to the end-user as a list of suggestions. We evaluated LAFF by assessing its effectiveness and efficiency in form filling on two datasets, one of them proprietary from the banking domain. Experimental results show that LAFF is able to provide accurate suggestions with a Mean Reciprocal Rank value above 0.73. Furthermore, LAFF is efficient, requiring at most 317 ms per suggestion.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
BELGACEM, Hichem ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Li, Xiaochen;  Dalian University of Technology ; University of Luxembourg > Interdisciplinary Center for Security, Reliability and Trust
BIANCULLI, Domenico  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Machine Learning Approach for Automated Filling of Categorical Fields in Data Entry Forms
Date de publication/diffusion :
mars 2023
Titre du périodique :
ACM Transactions on Software Engineering and Methodology
ISSN :
1049-331X
Maison d'édition :
Association for Computing Machinery (ACM), Etats-Unis
Volume/Tome :
32
Fascicule/Saison :
2
Pagination :
47:1-47:40
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 01 mai 2022

Statistiques


Nombre de vues
494 (dont 77 Unilu)
Nombre de téléchargements
293 (dont 30 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
4
OpenCitations
 
2
citations OpenAlex
 
11
citations WoS
 
7

Bibliographie


Publications similaires



Contacter ORBilu