Article (Périodiques scientifiques)
Federated Learning Meets Contract Theory: Economic-Efficiency Framework for Electric Vehicle Networks
Saputra, Yuris M.; Nguyen, Diep N.; Dinh, Thai Hoang et al.
2022In IEEE Transactions on Mobile Computing, 21 (8), p. 2803 - 2817
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
TCM20.pdf
Preprint Auteur (2.73 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Federated learning; privacy; contract theory; EV network; demand prediction
Résumé :
In this paper, we propose a novel energy-efficient framework for an electric vehicle (EV) network using a contract theoretic-based economic model to maximize the profits of charging stations (CSs) and improve the social welfare of the network. Specifically, we first introduce CS-based and CS clustering-based decentralized federated energy learning (DFEL) approaches which enable the CSs to train their own energy transactions locally to predict energy demands. In this way, each CS can exchange its learned model with other CSs to improve prediction accuracy without revealing actual datasets and reduce communication overhead among the CSs. Based on the energy demand prediction, we then design a multi-principal one-agent (MPOA) contract-based method. In particular, we formulate the CSs' utility maximization as a non-collaborative energy contract problem in which each CS maximizes its utility under common constraints from the smart grid provider (SGP) and other CSs' contracts. Then, we prove the existence of an equilibrium contract solution for all the CSs and develop an iterative algorithm at the SGP to find the equilibrium. Through simulation results using the dataset of CSs' transactions in Dundee city, the United Kingdom between 2017 and 2018, we demonstrate that our proposed method can achieve the energy demand prediction accuracy improvement up to 24.63% and lessen communication overhead by 96.3% compared with other machine learning algorithms. Furthermore, our proposed method can outperform non-contract-based economic models by 35% and 36% in terms of the CSs' utilities and social welfare of the network, respectively.
Disciplines :
Ingénierie électrique & électronique
Sciences informatiques
Auteur, co-auteur :
Saputra, Yuris M.;  University of Technology Sydney
Nguyen, Diep N.;  University of Technology Sydney
Dinh, Thai Hoang;  University of Technology Sydney
VU, Thang Xuan  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Dutkiewicz, Eryk;  University of Technology Sydney
CHATZINOTAS, Symeon  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SigCom
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Federated Learning Meets Contract Theory: Economic-Efficiency Framework for Electric Vehicle Networks
Date de publication/diffusion :
août 2022
Titre du périodique :
IEEE Transactions on Mobile Computing
ISSN :
1536-1233
Maison d'édition :
Institute of Electrical and Electronics Engineers, Etats-Unis
Volume/Tome :
21
Fascicule/Saison :
8
Pagination :
2803 - 2817
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 15 décembre 2020

Statistiques


Nombre de vues
305 (dont 13 Unilu)
Nombre de téléchargements
555 (dont 11 Unilu)

citations Scopus®
 
53
citations Scopus®
sans auto-citations
50
citations OpenAlex
 
65
citations WoS
 
45

Bibliographie


Publications similaires



Contacter ORBilu