[en] Background: The aim of this study is to explore an objective approach that aids the diagnosis of bipolar disorder (BD), based on optical coherence tomography (OCT) data which are analyzed using artificial intelligence. Methods: Structural analyses of nine layers of the retina were analyzed in 17 type I BD patients and 42 controls, according to the areas defined by the Early Treatment Diabetic Retinopathy Study (ETDRS) chart. The most discriminating variables made up the feature vector of several automatic classifiers: Gaussian Naive Bayes, K-nearest neighbors and support vector machines. Results: BD patients presented retinal thinning affecting most layers, compared to controls. The retinal thickness of the parafoveolar area showed a high capacity to discriminate BD subjects from healthy individuals, specifically for the ganglion cell (area under the curve (AUC) = 0.82) and internal plexiform (AUC = 0.83) layers. The best classifier showed an accuracy of 0.95 for classifying BD versus controls, using as variables of the feature vector the IPL (inner nasal region) and the INL (outer nasal and inner inferior regions) thickness. Conclusions: Our patients with BD present structural alterations in the retina, and artificial intelligence seem to be a useful tool in BD diagnosis, but larger studies are needed to confirm our findings.
Disciplines :
Sciences de la santé humaine: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Sanchez-Morla, Eva M.
Fuentes, Juan L.
Miguel-Jimenez
Boquete, Luciano
ORTIZ DEL CASTILLO, Miguel ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > CVI2
Orduna, Elvira
Saute, Maria
Garcia-Martin, Elena
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Automatic Diagnosis of Bipolar Disorder Using Optical Coherence Tomography Data and Artificial Intelligence
Date de publication/diffusion :
18 août 2021
Titre du périodique :
Journal of Personalized Medicine
eISSN :
2075-4426
Maison d'édition :
Multidisciplinary Digital Publishing Institute (MDPI), Suisse