Article (Périodiques scientifiques)
Modeling Data Protection and Privacy: Application and Experience with GDPR
TORRE, Damiano; ALFEREZ, Mauricio; SOLTANA, Ghanem et al.
2021In Software and Systems Modeling
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
Modeling_Data_Protection_and_Privacy__Application_and_Experiencewith_GDPR.pdf
Preprint Auteur (1.2 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
GDPR; regulatory compliance
Résumé :
[en] In Europe and indeed worldwide, the Gen- eral Data Protection Regulation (GDPR) provides pro- tection to individuals regarding their personal data in the face of new technological developments. GDPR is widely viewed as the benchmark for data protection and privacy regulations that harmonizes data privacy laws across Europe. Although the GDPR is highly ben- e cial to individuals, it presents signi cant challenges for organizations monitoring or storing personal infor- mation. Since there is currently no automated solution with broad industrial applicability, organizations have no choice but to carry out expensive manual audits to ensure GDPR compliance. In this paper, we present a complete GDPR UML model as a rst step towards de- signing automated methods for checking GDPR compli- ance. Given that the practical application of the GDPR is infuenced by national laws of the EU Member States,we suggest a two-tiered description of the GDPR, generic and specialized. In this paper, we provide (1) the GDPR conceptual model we developed with complete trace- ability from its classes to the GDPR, (2) a glossary to help understand the model, (3) the plain-English de- scription of 35 compliance rules derived from GDPR along with their encoding in OCL, and (4) the set of 20 variations points derived from GDPR to specialize the generic model. We further present the challenges we faced in our modeling endeavor, the lessons we learned from it, and future directions for research.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
TORRE, Damiano ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
ALFEREZ, Mauricio ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
SOLTANA, Ghanem ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SABETZADEH, Mehrdad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > SVV
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Modeling Data Protection and Privacy: Application and Experience with GDPR
Date de publication/diffusion :
2021
Titre du périodique :
Software and Systems Modeling
ISSN :
1619-1366
eISSN :
1619-1374
Maison d'édition :
Springer, Allemagne
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Intitulé du projet de recherche :
IMOREF
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 30 septembre 2021

Statistiques


Nombre de vues
317 (dont 37 Unilu)
Nombre de téléchargements
991 (dont 28 Unilu)

citations Scopus®
 
29
citations Scopus®
sans auto-citations
23
OpenCitations
 
6
citations OpenAlex
 
27
citations WoS
 
19

Bibliographie


Publications similaires



Contacter ORBilu