Article (Scientific journals)
Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening
Aalizadeh, Reza; Alygizakis, Nikiforos A.; Schymanski, Emma et al.
2021In Analytical Chemistry, 93 (33), p. 11601--11611
Peer reviewed
 

Files


Full Text
Aalizadeh_etal_2021_RTI_acs.analchem.1c02348_RTI.pdf
Publisher postprint (1.54 MB)
Request a copy

All rights reserved


All documents in ORBilu are protected by a user license.

Send to



Details



Abstract :
[en] There is an increasing need for comparable and harmonized retention times (tR) in liquid chromatography (LC) among different laboratories, to provide supplementary evidence for the identity of compounds in high-resolution mass spectrometry (HRMS)-based suspect and nontarget screening investigations. In this study, a rigorously tested, flexible, and less system-dependent unified retention time index (RTI) approach for LC is presented, based on the calibration of the elution pattern. Two sets of 18 calibrants were selected for each of ESI+ and ESI-based on the maximum overlap with the retention times and chemical similarity indices from a total set of 2123 compounds. The resulting calibration set, with RTI set to range between 1 and 1000, was proposed as the most appropriate RTI system after rigorous evaluation, coordinated by the NORMAN network. The validation of the proposed RTI system was done externally on different instrumentation and LC conditions. The RTI can also be used to check the reproducibility and quality of LC conditions. Two quantitative structure−retention relationship (QSRR)-based models were built based on the developed RTI systems, which assist in the removal of false-positive annotations. The applicability domains of the QSRR models allowed completing the identification process with higher confidence for substances within the domain, while indicating those substances for which results should be treated with caution. The proposed RTI system was used to improve confidence in suspect and nontarget screening and increase the comparability between laboratories as demonstrated for two examples. All RTI-related calculations can be performed online at http://rti.chem.uoa.gr/.
Disciplines :
Chemistry
Author, co-author :
Aalizadeh, Reza
Alygizakis, Nikiforos A.
Schymanski, Emma  ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Krauss, Martin
Schulze, Tobias
Ibáñez, María
McEachran, Andrew D.
Chao, Alex
Williams, Antony J.
Gago-Ferrero, Pablo
Covaci, Adrian
Moschet, Christoph
Young, Thomas M.
Hollender, Juliane
Slobodnik, Jaroslav
Thomaidis, Nikolaos S.
More authors (6 more) Less
External co-authors :
yes
Language :
English
Title :
Development and Application of Liquid Chromatographic Retention Time Indices in HRMS-Based Suspect and Nontarget Screening
Publication date :
2021
Journal title :
Analytical Chemistry
ISSN :
0003-2700
Volume :
93
Issue :
33
Pages :
11601--11611
Peer reviewed :
Peer reviewed
Focus Area :
Sustainable Development
FnR Project :
FNR12341006 - Environmental Cheminformatics To Identify Unknown Chemicals And Their Effects, 2018 (01/10/2018-30/09/2023) - Emma Schymanski
Available on ORBilu :
since 09 September 2021

Statistics


Number of views
182 (6 by Unilu)
Number of downloads
0 (0 by Unilu)

Scopus citations®
 
78
Scopus citations®
without self-citations
46
OpenCitations
 
34
WoS citations
 
68

Bibliography


Similar publications



Contact ORBilu