Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Avoiding bias when inferring race using name-based approaches
KOZLOWSKI, Diego; Murray, Dakota S.; Bell, Alexis et al.
2021In 18th INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS, 12–15 July 2021KU Leuven, Belgium
Peer reviewed
 

Documents


Texte intégral
ISSI2021.pdf
Preprint Auteur (2.96 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Racial disparity in academia is a widely acknowledged problem. The quantitative understanding of racial-based systemic inequalities is an important step towards a more equitable research system. However, few large-scale analyses have been performed on this topic, mostly because of the lack of robust race-disambiguation algorithms. Identifying author information does not generally include the author’s race. Therefore, an algorithm needs to be employed, using known information about authors, i.e., their names, to infer their perceived race. Nevertheless, as any other algorithm, the process of racial inference can generate biases if it is not carefully considered. When the research is focused on the understanding of racial-based inequalities, such biases undermine the objectives of the investigation and may perpetuate inequities. The goal of this article is to assess the biases introduced by the different approaches used name-based racial inference. We use information from US census and mortgage applications to infer the race of US author names in the Web of Science. We estimate the effects of using given and family names, thresholds or continuous distributions, and imputation. Our results demonstrate that the validity of name-based inference varies by race and ethnicity and that threshold approaches underestimate Black authors and overestimate White authors. We conclude with recommendations to avoid potential biases. This article fills an important research gap that will allow more systematic and unbiased studies on racial disparity in science.
Disciplines :
Sociologie & sciences sociales
Auteur, co-auteur :
KOZLOWSKI, Diego ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Engineering (DoE)
Murray, Dakota S.;  Indiana University Bloomington, IN, USA > School of Informatics, Computing, and Engineering
Bell, Alexis;  Berry College, GA, USA > Campbell School of Business
Husley, Will;  Berry College, GA, USA > Campbell School of Business
Larivière, Vincent;  Université de Montréal, Montréal, QC, Canada > École de bibliothéconomie et des sciences de l’information
Monroe-White;  Berry College, GA, USA > Campbell School of Business, > Assistant Professor of Technology, Entrepreneurship, and Data Analytics
Sugimoto, Cassidy R.;  Indiana University Bloomington, IN, USA > School of Informatics, Computing, and Engineering
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Avoiding bias when inferring race using name-based approaches
Date de publication/diffusion :
juillet 2021
Nom de la manifestation :
18th International Conference on Scientometrics & Informetrics
Organisateur de la manifestation :
ISSI
Lieu de la manifestation :
Leuven, Belgique
Date de la manifestation :
from 12-07-2021 to 15-07-2021
Manifestation à portée :
International
Titre de l'ouvrage principal :
18th INTERNATIONAL CONFERENCE ON SCIENTOMETRICS & INFORMETRICS, 12–15 July 2021KU Leuven, Belgium
ISBN/EAN :
9789080328228
Pagination :
597-608
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
URL complémentaire :
Projet FnR :
FNR12252781 - Data-driven Computational Modelling And Applications, 2017 (01/09/2018-28/02/2025) - Andreas Zilian
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 18 avril 2021

Statistiques


Nombre de vues
350 (dont 7 Unilu)
Nombre de téléchargements
210 (dont 1 Unilu)

citations Scopus®
 
1
citations Scopus®
sans auto-citations
0
citations WoS
 
2

Bibliographie


Publications similaires



Contacter ORBilu