Article (Périodiques scientifiques)
Box-Total Dual Integrality, Box-Integrality, and Equimodular Matrices
Chervet, Patrick; Grappe, Roland; ROBERT, Louis-Hadrien
2020In Mathematical Programming
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
PBI-orbi_lu.pdf
Postprint Éditeur (442.09 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Box-integer polyhedron; Polyhedral cone; Equimodular matrix
Résumé :
[en] A polyhedron is box-integer if its intersection with any integer box {ℓ≤x≤u} is integer. We define principally box-integer polyhedra to be the polyhedra P such that kP is box-integer whenever kP is integer. We characterize them in several ways, involving equimodular matrices and box-total dual integral (box-TDI) systems. A rational r×n matrix is equimodular if it has full row rank and its nonzero r×r determinants all have the same absolute value. A face-defining matrix is a full row rank matrix describing the affine hull of a face of the polyhedron. Box-TDI systems are systems which yield strong min-max relations, and the underlying polyhedron is called a box-TDI polyhedron. Our main result is that the following statements are equivalent. - The polyhedron P is principally box-integer. - The polyhedron P is box-TDI. - Every face-defining matrix of P is equimodular. - Every face of P has an equimodular face-defining matrix. - Every face of P has a totally unimodular face-defining matrix. - For every face F of P, lin(F) has a totally unimodular basis. Along our proof, we show that a cone {x:Ax≤0} is box-TDI if and only if it is box-integer, and that these properties are passed on to its polar. We illustrate the use of these characterizations by reviewing well known results about box-TDI polyhedra. We also provide several applications. The first one is a new perspective on the equivalence between two results about binary clutters. Secondly, we refute a conjecture of Ding, Zang, and Zhao about box-perfect graphs. Thirdly, we discuss connections with an abstract class of polyhedra having the Integer Carathéodory Property. Finally, we characterize the box-TDIness of the cone of conservative functions of a graph and provide a corresponding box-TDI system.
Disciplines :
Mathématiques
Auteur, co-auteur :
Chervet, Patrick;  Lycée Olympe de Gouges (Minisère Français de l'Éducation Nationale)
Grappe, Roland;  Université Paris Nord > LIPN
ROBERT, Louis-Hadrien ;  University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Box-Total Dual Integrality, Box-Integrality, and Equimodular Matrices
Date de publication/diffusion :
2020
Titre du périodique :
Mathematical Programming
ISSN :
0025-5610
eISSN :
1436-4646
Maison d'édition :
Springer, Allemagne
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR12246620 - Geometry, Probability And Their Synergies, 2017 (01/01/2019-30/06/2025) - Hugo Parlier
Disponible sur ORBilu :
depuis le 15 mars 2021

Statistiques


Nombre de vues
159 (dont 6 Unilu)
Nombre de téléchargements
231 (dont 2 Unilu)

citations Scopus®
 
8
citations Scopus®
sans auto-citations
4
OpenCitations
 
3
citations OpenAlex
 
9
citations WoS
 
10

Bibliographie


Publications similaires



Contacter ORBilu