[en] We provide a finite-dimensional categorification of the symmetric evaluation of sl(N)-webs using foam technology. As an output we obtain a symmetric link homology theory categorifying the link invariant associated to symmetric powers of the standard representation of sl(N). The construction is made in an equivariant setting. We prove also that there is a spectral sequence from the Khovanov--Rozansky triply graded link homology to the symmetric one and provide along the way a foam interpretation of Soergel bimodules.
Disciplines :
Mathématiques
Auteur, co-auteur :
ROBERT, Louis-Hadrien ; University of Luxembourg > Faculty of Science, Technology and Medicine (FSTM) > Department of Mathematics (DMATH)
Wagner, Emmanuel; Université de Paris > IMJ-PRG
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Symmetric Khovanov--Rozansky link homologies
Date de publication/diffusion :
2020
Titre du périodique :
Journal de l'École Polytechnique. Mathématiques
ISSN :
2429-7100
eISSN :
2270-518X
Maison d'édition :
Éditions de l'École Polytechnique, Palaiseau, France
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet FnR :
FNR12246620 - Geometry, Probability And Their Synergies, 2017 (01/01/2019-30/06/2025) - Hugo Parlier