Article (Périodiques scientifiques)
Transfer Learning and Meta Learning Based Fast Downlink Beamforming Adaptation
Yuan, Yi; Zheng, G.; Wong, K.-K. et al.
2021In IEEE Transactions on Wireless Communications, p. 1-1
Peer reviewed
 

Documents


Texte intégral
09257198_3_Transfer Learning.pdf
Postprint Éditeur (2.34 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Array signal processing;Wireless communication;Training;Adaptation models;Task analysis;Resource management;Uplink;Deep transfer learning;meta-learning;online learning;beamforming;MISO;SINR balancing
Résumé :
[en] This paper studies fast adaptive beamforming optimization for the signal-to-interference-plus-noise ratio balancing problem in a multiuser multiple-input single-output downlink system. Existing deep learning based approaches to predict beamforming rely on the assumption that the training and testing channels follow the same distribution which may not hold in practice. As a result, a trained model may lead to performance deterioration when the testing network environment changes. To deal with this task mismatch issue, we propose two offline adaptive algorithms based on deep transfer learning and meta-learning, which are able to achieve fast adaptation with the limited new labelled data when the testing wireless environment changes. Furthermore, we propose an online algorithm to enhance the adaptation capability of the offline meta algorithm in realistic non-stationary environments. Simulation results demonstrate that the proposed adaptive algorithms achieve much better performance than the direct deep learning algorithm without adaptation in new environments. The meta-learning algorithm outperforms the deep transfer learning algorithm and achieves near optimal performance. In addition, compared to the offline meta-learning algorithm, the proposed online meta-learning algorithm shows superior adaption performance in changing environments.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Yuan, Yi
Zheng, G.
Wong, K.-K.
OTTERSTEN, Björn  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Luo, Z.-Q.
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Transfer Learning and Meta Learning Based Fast Downlink Beamforming Adaptation
Date de publication/diffusion :
2021
Titre du périodique :
IEEE Transactions on Wireless Communications
Pagination :
1-1
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 18 janvier 2021

Statistiques


Nombre de vues
155 (dont 8 Unilu)
Nombre de téléchargements
385 (dont 2 Unilu)

citations Scopus®
 
101
citations Scopus®
sans auto-citations
97
citations OpenAlex
 
101
citations WoS
 
84

Bibliographie


Publications similaires



Contacter ORBilu