Article (Périodiques scientifiques)
Multi-Channel Joint Forecasting-Scheduling for the Internet of Things
Rodoplu, Volkan; Nakip, Mert; QORBANIAN, Roozbeh et al.
2020In IEEE Access, 8
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
IEEE Xplore Full-Text PDF.pdf
Postprint Éditeur (5.08 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Forecasting; scheduling; massive access; IoT; M2M; communication
Résumé :
[en] We develop a methodology for Multi-Channel Joint Forecasting-Scheduling (MC-JFS) targeted at solving the Medium Access Control (MAC) layer Massive Access Problem of Machine-to-Machine (M2M) communication in the presence of multiple channels, as found in Orthogonal Frequency Division Multiple Access (OFDMA) systems. In contrast with the existing schemes that merely react to current traffic demand, Joint Forecasting-Scheduling (JFS) forecasts the traffic generation pattern of each Internet of Things (IoT) device in the coverage area of an IoT Gateway and schedules the uplink transmissions of the IoT devices over multiple channels in advance, thus obviating contention, collision and handshaking, which are found in reactive protocols. In this paper, we present the general form of a deterministic scheduling optimization program for MC-JFS that maximizes the total number of bits that are delivered over multiple channels by the delay deadlines of the IoT applications. In order to enable real-time operation of the MC-JFS system, first, we design a heuristic, called Multi-Channel Look Ahead Priority based on Average Load (MC-LAPAL), that solves the general form of the scheduling problem. Second, for the special case of identical channels, we develop a reduction technique by virtue of which an optimal solution of the scheduling problem is computed in real time. We compare the network performance of our MC-JFS scheme against Multi-Channel Reservation-based Access Barring (MC-RAB) and Multi-Channel Enhanced Reservation-based Access Barring (MC-ERAB), both of which serve as benchmark reactive protocols. Our results show that MC-JFS outperforms both MC-RAB and MC-ERAB with respect to uplink cross-layer throughput and transmit energy consumption, and that MC-LAPAL provides high performance as an MC-JFS heuristic. Furthermore, we show that the computation time of MC-LAPAL scales approximately linearly with the number of IoT devices. This work serves as a foundation for building scalable JFS schemes at IoT Gateways in the near future.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Rodoplu, Volkan
Nakip, Mert
QORBANIAN, Roozbeh ;  University of Luxembourg > Faculty of Law, Economics and Finance (FDEF) > Department of Economics and Management (DEM)
Türsel Eliiyi, Deniz
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Multi-Channel Joint Forecasting-Scheduling for the Internet of Things
Date de publication/diffusion :
16 novembre 2020
Titre du périodique :
IEEE Access
ISSN :
2169-3536
Maison d'édition :
Institute of Electrical and Electronics Engineers, Piscataway, Etats-Unis - New Jersey
Volume/Tome :
8
Peer reviewed :
Peer reviewed vérifié par ORBi
Disponible sur ORBilu :
depuis le 12 janvier 2021

Statistiques


Nombre de vues
145 (dont 6 Unilu)
Nombre de téléchargements
107 (dont 0 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
4
citations OpenAlex
 
17
citations WoS
 
12

Bibliographie


Publications similaires



Contacter ORBilu