Article (Périodiques scientifiques)
Extended Adjacency and Scale-dependent Graph Fourier Transform via Diffusion Distances
Elias, Vitor R.M.; ALVES MARTINS, Wallace; Werner, Stefan
2020In IEEE Transactions on Signal and Information Processing over Networks
Peer reviewed
 

Documents


Texte intégral
IEEE-TSIPN-ExtendedAdjacency-AuthorsPreprint.pdf
Preprint Auteur (567.57 kB)
Demander un accès

2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works — authors’ preprint of paper published in the IEEE Transactions on Signal and Information Processing over Networks.


Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
diffusion distances; diffusion maps; extended adjacency; graph signal processing; scale-dependent graph Fourier transform
Résumé :
[en] This paper proposes the augmentation of the adjacency model of networks for graph signal processing. It is assumed that no information about the network is available, apart from the initial adjacency matrix. In the proposed model, additional edges are created according to a Markov relation imposed between nodes. This information is incorporated into the extended-adjacency matrix as a function of the diffusion distance between nodes. The diffusion distance measures similarities between nodes at a certain diffusion scale or time, and is a metric adopted from diffusion maps. Similarly, the proposed extended-adjacency matrix depends on the diffusion scale, which enables the definition of a scale-dependent graph Fourier transform. We conduct theoretical analyses of both the extended adjacency and the corresponding graph Fourier transform and show that different diffusion scales lead to different graph-frequency perspectives. At different scales, the transform discriminates shifted ranges of signal variations across the graph, revealing more information on the graph signal when compared to traditional approaches. The scale-dependent graph Fourier transform is applied for anomaly detection and is shown to outperform the conventional graph Fourier transform.
Disciplines :
Ingénierie électrique & électronique
Auteur, co-auteur :
Elias, Vitor R.M.
ALVES MARTINS, Wallace ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Werner, Stefan;  Norwegian University of Science and Technology (NTNU) > Department of Electronic Systems
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Extended Adjacency and Scale-dependent Graph Fourier Transform via Diffusion Distances
Date de publication/diffusion :
2020
Titre du périodique :
IEEE Transactions on Signal and Information Processing over Networks
ISSN :
2373-776X
Maison d'édition :
Institute of Electrical and Electronics Engineers, New York, Etats-Unis - New York
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 742648 - AGNOSTIC - Actively Enhanced Cognition based Framework for Design of Complex Systems
Organisme subsidiant :
CE - Commission Européenne
Disponible sur ORBilu :
depuis le 06 août 2020

Statistiques


Nombre de vues
174 (dont 7 Unilu)
Nombre de téléchargements
3 (dont 3 Unilu)

citations Scopus®
 
7
citations Scopus®
sans auto-citations
5
citations OpenAlex
 
6
citations WoS
 
6

Bibliographie


Publications similaires



Contacter ORBilu