Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Temporal 3D Human Pose Estimation for Action Recognition from Arbitrary Viewpoints
Adel Musallam, Mohamed; BAPTISTA, Renato; AL ISMAEIL, Kassem et al.
2019In 6th Annual Conf. on Computational Science & Computational Intelligence, Las Vegas 5-7 December 2019
Peer reviewed
 

Documents


Texte intégral
csci_cameraready_2019.pdf
Postprint Auteur (6.01 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
View-Invariant; Human Action Recognition; Human Pose Estimation
Résumé :
[en] This work presents a new view-invariant action recognition system that is able to classify human actions by using a single RGB camera, including challenging camera viewpoints. Understanding actions from different viewpoints remains an extremely challenging problem, due to depth ambiguities, occlusion, and a large variety of appearances and scenes. Moreover, using only the information from the 2D perspective gives different interpretations for the same action seen from different viewpoints. Our system operates in two subsequent stages. The first stage estimates the 2D human pose using a convolution neural network. In the next stage, the 2D human poses are lifted to 3D human poses, using a temporal convolution neural network that enforces the temporal coherence over the estimated 3D poses. The estimated 3D poses from different viewpoints are then aligned to the same camera reference frame. Finally, we propose to use a temporal convolution network-based classifier for cross-view action recognition. Our results show that we can achieve state of art view-invariant action recognition accuracy even for the challenging viewpoints by only using RGB videos, without pre-training on synthetic or motion capture data.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SIGCOM
Disciplines :
Sciences informatiques
Auteur, co-auteur :
Adel Musallam, Mohamed
BAPTISTA, Renato ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
AL ISMAEIL, Kassem ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
AOUADA, Djamila  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Temporal 3D Human Pose Estimation for Action Recognition from Arbitrary Viewpoints
Date de publication/diffusion :
décembre 2019
Nom de la manifestation :
6th Annual Conf. on Computational Science & Computational Intelligence
Organisateur de la manifestation :
https://americancse.org/events/csci2019
Date de la manifestation :
5-7 December 2019
Manifestation à portée :
International
Titre de l'ouvrage principal :
6th Annual Conf. on Computational Science & Computational Intelligence, Las Vegas 5-7 December 2019
Maison d'édition :
Conference Publishing Services
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Projet européen :
H2020 - 689947 - STARR - Decision SupporT and self-mAnagement system for stRoke survivoRs
Projet FnR :
FNR10415355 - 3d Action Recognition Using Refinement And Invariance Strategies For Reliable Surveillance, 2015 (01/06/2016-31/05/2019) - Bjorn Ottersten
Organisme subsidiant :
CE - Commission Européenne
European Union
Disponible sur ORBilu :
depuis le 30 novembre 2019

Statistiques


Nombre de vues
462 (dont 17 Unilu)
Nombre de téléchargements
523 (dont 9 Unilu)

citations Scopus®
 
6
citations Scopus®
sans auto-citations
5

Bibliographie


Publications similaires



Contacter ORBilu