Communication publiée dans un périodique (Colloques, congrès, conférences scientifiques et actes)
Visualization of AE's Training on Credit Card Transactions with Persistent Homology
CHARLIER, Jérémy Henri J.; PETIT, François; Ormazabal, Gaston et al.
2019In Proceedings of the International Workshop on Applications of Topological Data Analysis In conjunction with ECML PKDD 2019
Peer reviewed
 

Documents


Texte intégral
ECMLPKDD_PHomWAE(1).pdf
Preprint Auteur (530.68 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Barcodes; Encoding-Decoding; Persistence Diagrams
Résumé :
[en] Auto-encoders are among the most popular neural network architecture for dimension reduction. They are composed of two parts: the encoder which maps the model distribution to a latent manifold and the decoder which maps the latent manifold to a reconstructed distribution. However, auto-encoders are known to provoke chaotically scattered data distribution in the latent manifold resulting in an incomplete reconstructed distribution. Current distance measures fail to detect this problem because they are not able to acknowledge the shape of the data manifolds, i.e. their topological features, and the scale at which the manifolds should be analyzed. We propose Persistent Homology for Wasserstein Auto-Encoders, called PHom-WAE, a new methodology to assess and measure the data distribution of a generative model. PHom-WAE minimizes the Wasserstein distance between the true distribution and the reconstructed distribution and uses persistent homology, the study of the topological features of a space at different spatial resolutions, to compare the nature of the latent manifold and the reconstructed distribution. Our experiments underline the potential of persistent homology for Wasserstein Auto-Encoders in comparison to Variational Auto-Encoders, another type of generative model. The experiments are conducted on a real-world data set particularly challenging for traditional distance measures and auto-encoders. PHom-WAE is the first methodology to propose a topological distance measure, the bottleneck distance, for Wasserstein Auto-Encoders used to compare decoded samples of high quality in the context of credit card transactions.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Services and Data management research group (SEDAN)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CHARLIER, Jérémy Henri J. ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
PETIT, François ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Ormazabal, Gaston
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
HILGER, Jean ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Visualization of AE's Training on Credit Card Transactions with Persistent Homology
Date de publication/diffusion :
septembre 2019
Nom de la manifestation :
International Workshop on Applications of Topological Data Analysis In conjunction with ECML PKDD 2019
Organisateur de la manifestation :
ECML PKDD
Lieu de la manifestation :
Würzburg, Allemagne
Date de la manifestation :
from 16-09-2019 to 20-09-2019
Manifestation à portée :
International
Titre du périodique :
Proceedings of the International Workshop on Applications of Topological Data Analysis In conjunction with ECML PKDD 2019
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 12 septembre 2019

Statistiques


Nombre de vues
144 (dont 5 Unilu)
Nombre de téléchargements
128 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu