Article (Périodiques scientifiques)
DNA-SeAl: Sensitivity Levels to Optimize the Performance of Privacy-Preserving DNA Alignment
FERNANDES, Maria; DECOUCHANT, Jérémie; VOLP, Marcus et al.
2019In IEEE Journal of Biomedical and Health Informatics
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
DNA-SeAl_Sensitivity_Levels_to_Optimize_the_Perfor.pdf
Preprint Auteur (528.99 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
sensitivity levels; DNA alignment
Résumé :
[en] The advent of next-generation sequencing (NGS) machines made DNA sequencing cheaper, but also put pressure on the genomic life-cycle, which includes aligning millions of short DNA sequences, called reads, to a reference genome. On the performance side, efficient algorithms have been developed, and parallelized on public clouds. On the privacy side, since genomic data are utterly sensitive, several cryptographic mechanisms have been proposed to align reads more securely than the former, but with a lower performance. This manuscript presents DNA-SeAl a novel contribution to improving the privacy × performance product in current genomic workflows. First, building on recent works that argue that genomic data needs to be treated according to a threat-risk analysis, we introduce a multi-level sensitivity classification of genomic variations designed to prevent the amplification of possible privacy attacks. We show that the usage of sensitivity levels reduces future re-identification risks, and that their partitioning helps prevent linkage attacks. Second, after extending this classification to reads, we show how to align and store reads using different security levels. To do so, DNA-SeAl extends a recent reads filter to classify unaligned reads into sensitivity levels, and adapts existing alignment algorithms to the reads sensitivity. We show that using DNA-SeAl allows high performance gains whilst enforcing high privacy levels in hybrid cloud environments.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
FERNANDES, Maria ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
DECOUCHANT, Jérémie ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
VOLP, Marcus  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Couto, Francisco;  LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal
VERISSIMO, Paulo ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
DNA-SeAl: Sensitivity Levels to Optimize the Performance of Privacy-Preserving DNA Alignment
Date de publication/diffusion :
juin 2019
Titre du périodique :
IEEE Journal of Biomedical and Health Informatics
ISSN :
2168-2194
eISSN :
2168-2208
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 04 août 2019

Statistiques


Nombre de vues
332 (dont 30 Unilu)
Nombre de téléchargements
140 (dont 20 Unilu)

citations Scopus®
 
10
citations Scopus®
sans auto-citations
9
citations OpenAlex
 
13
citations WoS
 
8

Bibliographie


Publications similaires



Contacter ORBilu