Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
A Machine Learning-Based Approach for Demarcating Requirements in Textual Specifications
ABUALHAIJA, Sallam; ARORA, Chetan; SABETZADEH, Mehrdad et al.
2019In Proceedings of the 27th IEEE International Requirements Engineering Conference (RE'19), Jeju, Korea (South), 23-27 September, 2019
Peer reviewed
 

Documents


Texte intégral
AASBV_RE19.pdf
Postprint Auteur (1.14 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Textual Requirements; Requirements Identification and Classification; Machine Learning; Natural Language Processing
Résumé :
[en] A simple but important task during the analysis of a textual requirements specification is to determine which statements in the specification represent requirements. In principle, by following suitable writing and markup conventions, one can provide an immediate and unequivocal demarcation of requirements at the time a specification is being developed. However, neither the presence nor a fully accurate enforcement of such conventions is guaranteed. The result is that, in many practical situations, analysts end up resorting to after-the-fact reviews for sifting requirements from other material in a requirements specification. This is both tedious and time-consuming. We propose an automated approach for demarcating requirements in free-form requirements specifications. The approach, which is based on machine learning, can be applied to a wide variety of specifications in different domains and with different writing styles. We train and evaluate our approach over an independently labeled dataset comprised of 30 industrial requirements specifications. Over this dataset, our approach yields an average precision of 81.2% and an average recall of 95.7%. Compared to simple baselines that demarcate requirements based on the presence of modal verbs and identifiers, our approach leads to an average gain of 16.4% in precision and 25.5% in recall.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > SVV - Software Verification and Validation
Disciplines :
Sciences informatiques
Auteur, co-auteur :
ABUALHAIJA, Sallam  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
ARORA, Chetan ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SABETZADEH, Mehrdad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; University of Ottawa > School of Engineering and Computer Science
Vaz, Eduardo;  QRA Corp
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
A Machine Learning-Based Approach for Demarcating Requirements in Textual Specifications
Date de publication/diffusion :
2019
Nom de la manifestation :
27th IEEE International Requirements Engineering Conference (RE'19)
Date de la manifestation :
September 21-27, 2019
Titre de l'ouvrage principal :
Proceedings of the 27th IEEE International Requirements Engineering Conference (RE'19), Jeju, Korea (South), 23-27 September, 2019
Maison d'édition :
IEEE
Peer reviewed :
Peer reviewed
Projet européen :
H2020 - 694277 - TUNE - Testing the Untestable: Model Testing of Complex Software-Intensive Systems
Projet FnR :
FNR12632261 - Early Quality Assurance Of Critical Systems, 2018 (01/01/2019-31/12/2021) - Mehrdad Sabetzadeh
Organisme subsidiant :
CE - Commission Européenne
Union Européenne
FNR - Luxembourg National Research Fund
Disponible sur ORBilu :
depuis le 12 juillet 2019

Statistiques


Nombre de vues
753 (dont 84 Unilu)
Nombre de téléchargements
1025 (dont 61 Unilu)

OpenCitations
 
22
citations OpenAlex
 
36

Bibliographie


Publications similaires



Contacter ORBilu