Article (Périodiques scientifiques)
Towards exact molecular dynamics simulations with machine-learned force fields
Chmiela, Stefan; Sauceda, Huziel E.; Müller, Klaus-Robert et al.
2018In Nature Communications, 9, p. 3887
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
133-Exact-MD-sGDML-NatureComms-2018.pdf
Postprint Éditeur (2.14 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Molecular dynamics (MD) simulations employing classical force fields constitute the cornerstone of contemporary atomistic modeling in chemistry, biology, and materials science. However, the predictive power of these simulations is only as good as the underlying interatomic potential. Classical potentials often fail to faithfully capture key quantum effects in molecules and materials. Here we enable the direct construction of flexible molecular force fields from high-level ab initio calculations by incorporating spatial and temporal physical symmetries into a gradient-domain machine learning (sGDML) model in an automatic data-driven way. The developed sGDML approach faithfully reproduces global force fields at quantum-chemical CCSD(T) level of accuracy and allows converged molecular dynamics simulations with fully quantized electrons and nuclei. We present MD simulations, for flexible molecules with up to a few dozen atoms and provide insights into the dynamical behavior of these molecules. Our approach provides the key missing ingredient for achieving spectroscopic accuracy in molecular simulations.
Disciplines :
Physique, chimie, mathématiques & sciences de la terre: Multidisciplinaire, généralités & autres
Auteur, co-auteur :
Chmiela, Stefan
Sauceda, Huziel E.
Müller, Klaus-Robert
TKATCHENKO, Alexandre ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Physics and Materials Science Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Towards exact molecular dynamics simulations with machine-learned force fields
Date de publication/diffusion :
15 octobre 2018
Titre du périodique :
Nature Communications
eISSN :
2041-1723
Maison d'édition :
Nature Publishing Group, London, Royaume-Uni
Volume/Tome :
9
Pagination :
3887
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Physics and Materials Science
Disponible sur ORBilu :
depuis le 11 novembre 2018

Statistiques


Nombre de vues
388 (dont 10 Unilu)
Nombre de téléchargements
386 (dont 6 Unilu)

citations Scopus®
 
631
citations Scopus®
sans auto-citations
576
OpenCitations
 
336
citations OpenAlex
 
620
citations WoS
 
594

Bibliographie


Publications similaires



Contacter ORBilu