Communication poster (Colloques, congrès, conférences scientifiques et actes)
The Price of Privacy in Collaborative Learning
PEJO, Balazs; TANG, Qiang; Gergely, Biczok
2018The 25th ACM Conference on Computer and Communications Security
 

Documents


Texte intégral
Together_or_Alone (1).pdf
Postprint Auteur (744.18 kB)
Télécharger
Annexes
Poster_new.pdf
(761.59 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Privacy; Game Theory; Machine Learning
Résumé :
[en] Machine learning algorithms have reached mainstream status and are widely deployed in many applications. The accuracy of such algorithms depends significantly on the size of the underlying training dataset; in reality a small or medium sized organization often does not have enough data to train a reasonably accurate model. For such organizations, a realistic solution is to train machine learning models based on a joint dataset (which is a union of the individual ones). Unfortunately, privacy concerns prevent them from straightforwardly doing so. While a number of privacy-preserving solutions exist for collaborating organizations to securely aggregate the parameters in the process of training the models, we are not aware of any work that provides a rational framework for the participants to precisely balance the privacy loss and accuracy gain in their collaboration. In this paper, we model the collaborative training process as a two-player game where each player aims to achieve higher accuracy while preserving the privacy of its own dataset. We introduce the notion of Price of Privacy, a novel approach for measuring the impact of privacy protection on the accuracy in the proposed framework. Furthermore, we develop a game-theoretical model for different player types, and then either find or prove the existence of a Nash Equilibrium with regard to the strength of privacy protection for each player.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
PEJO, Balazs ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
TANG, Qiang ;  Luxembourg Institute of Science & Technology - LIST
Gergely, Biczok;  Budapest University of Technology and Economics > Department of Telecommunications and Media Informatics
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
The Price of Privacy in Collaborative Learning
Date de publication/diffusion :
octobre 2018
Nom de la manifestation :
The 25th ACM Conference on Computer and Communications Security
Lieu de la manifestation :
Toronto, Canada
Date de la manifestation :
from 15-10-2018 to 19-10-2018
Manifestation à portée :
International
Focus Area :
Security, Reliability and Trust
Disponible sur ORBilu :
depuis le 21 septembre 2018

Statistiques


Nombre de vues
220 (dont 5 Unilu)
Nombre de téléchargements
394 (dont 11 Unilu)

OpenCitations
 
4
citations OpenAlex
 
6

Bibliographie


Publications similaires



Contacter ORBilu