Pas de texte intégral
Thèse de doctorat (Mémoires et thèses)
COMPUTATIONAL PREDICTION OF BIOCHEMICAL COMPENSATORY MECHANISMS IN SUBJECTS AT RISK OF DEVELOPING PARKINSON’S DISEASE.
EL ASSAL, Diana Charles
2018
 

Documents


Texte intégral
Aucun document disponible.

Envoyer vers



Détails



Mots-clés :
Parkinson's disease; COBRA; model; constraint-based model; modeling; mitochondria; energy metabolism; ATP; glycolysis; idiopathic; Recon; dopaminergic neuron
Résumé :
[en] Parkinson’s disease (PD) is characterised by the degeneration of substantia nigra pars compacta dopaminergic neurons. These neurons have a highly complex axonal arborisation and a high energy demand, so any reduction in ATP synthesis could lead to an imbalance between demand and supply, thereby impeding normal neuronal bioenergetic requirements. The notion of energy metabolism inevitably implicates mitochondria, the cells’ main powerhouses, linking glycolysis to oxidative phosphorylation. In the brain, there are two types of mitochondria, with synaptic mitochondria localised to neuronal synapses and somal mitochondria localised to glial or neuronal somata. It has long been known that synaptic and somal mitochondria differ in their localisation, substrate utilisation, and enzymatic activities. For example, after biogenesis in and transport from the soma, synaptic mitochondria become highly dependent upon oxidative phosphorylation and exhibit increased vulnerability to dysfunction in PD, as opposed to somal mitochondria. Since the description of the disease by the London apothecary James Parkinson in 1817 and after more than two hundred years of descriptive research, we envisaged that quantitative computational modelling of PD will allow a cumulative, formal synthesis of the results of this research to occur. Clearly not all at-risk subjects actually develop PD, the open question is why? Are there biochemical compensatory mechanisms that protect some at-risk individuals from developing PD? We addressed this question using constraint-based computational modelling of dopaminergic neuronal metabolism, because we hypothesised that the existence of metabolic compensatory mechanisms can be predicted using comprehensive models of healthy, albeit at risk, and diseased dopaminergic neurons. A systems biochemistry approach was applied to identify the metabolic pathways used by neural models for energy generation. The mitochondrial component of an existing manual reconstruction of human metabolism (Recon 3D) was extended with manual curation of the biochemical literature and specialised using omics data from PD patients and controls, to generate reconstructions of synaptic, somal, and astrocytic metabolism. Following the imposition of experimentally-derived constraints, these reconstructions were converted into stoichiometrically- and flux-consistent constraint-based computational models. These models predict that PD is accompanied by a failure of the nigrostriatal glycolytic pathway and that in silico perturbations to non-trivial reaction rates may be able to rescue this bioenergetic phenotype. This is consistent with independent experimental reports where the enhancement of glycolysis was shown to provide neuroprotection in PD. This is the first application of biochemical network modelling used for the prediction of novel putative metabolic targets: a step closer towards the treatment of idiopathic PD.
Centre de recherche :
Luxembourg Centre for Systems Biomedicine (LCSB): Systems Biochemistry (Fleming Group)
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
EL ASSAL, Diana Charles ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Langue du document :
Anglais
Titre :
COMPUTATIONAL PREDICTION OF BIOCHEMICAL COMPENSATORY MECHANISMS IN SUBJECTS AT RISK OF DEVELOPING PARKINSON’S DISEASE.
Date de soutenance :
29 juin 2018
Nombre de pages :
268
Institution :
Unilu - University of Luxembourg, Luxembourg
Intitulé du diplôme :
Docteur en Biologie
Promoteur :
Fleming, Ronan M.T.
Président du jury :
Membre du jury :
Vila Bover, Miquel
Draeger, Andreas
Focus Area :
Systems Biomedicine
Projet FnR :
FNR8944252 - Computational Prediction Of Biochemical Compensatory Mechanisms In Subjects At Risk Of Developing Parkinson's Disease., 2014 (01/09/2014-30/06/2018) - Diana Charles El Assal-jordan
Intitulé du projet de recherche :
R-STR-4020-00 > Systems Biochemistry (Fleming) > 01/01/2013 - 19/01/2048 > FLEMING Ronan MT
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 28 août 2018

Statistiques


Nombre de vues
221 (dont 28 Unilu)
Nombre de téléchargements
1 (dont 1 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu