Article (Périodiques scientifiques)
Using Regularization to Infer Cell Line Specificity in Logical Network Models of Signaling Pathways.
De Landtsheer, Sébastien; LUCARELLI, Philippe; SAUTER, Thomas
2018In Frontiers in Physiology, 9, p. 550
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
fphys-09-00550.pdf
Postprint Éditeur (2.88 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
clustering; logical model; network model; optimization; regularization; sparsity
Résumé :
[en] Understanding the functional properties of cells of different origins is a long-standing challenge of personalized medicine. Especially in cancer, the high heterogeneity observed in patients slows down the development of effective cures. The molecular differences between cell types or between healthy and diseased cellular states are usually determined by the wiring of regulatory networks. Understanding these molecular and cellular differences at the systems level would improve patient stratification and facilitate the design of rational intervention strategies. Models of cellular regulatory networks frequently make weak assumptions about the distribution of model parameters across cell types or patients. These assumptions are usually expressed in the form of regularization of the objective function of the optimization problem. We propose a new method of regularization for network models of signaling pathways based on the local density of the inferred parameter values within the parameter space. Our method reduces the complexity of models by creating groups of cell line-specific parameters which can then be optimized together. We demonstrate the use of our method by recovering the correct topology and inferring accurate values of the parameters of a small synthetic model. To show the value of our method in a realistic setting, we re-analyze a recently published phosphoproteomic dataset from a panel of 14 colon cancer cell lines. We conclude that our method efficiently reduces model complexity and helps recovering context-specific regulatory information.
Disciplines :
Biochimie, biophysique & biologie moléculaire
Auteur, co-auteur :
De Landtsheer, Sébastien
LUCARELLI, Philippe ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB) > Life Science Research Unit
SAUTER, Thomas ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Life Science Research Unit
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Using Regularization to Infer Cell Line Specificity in Logical Network Models of Signaling Pathways.
Date de publication/diffusion :
2018
Titre du périodique :
Frontiers in Physiology
eISSN :
1664-042X
Maison d'édition :
Frontiers Media S.A., Suisse
Volume/Tome :
9
Pagination :
550
Peer reviewed :
Peer reviewed vérifié par ORBi
Projet européen :
H2020 - 642295 - MEL-PLEX - Exploiting MELanoma disease comPLEXity to address European research training needs in translational cancer systems biology and cancer systems medicine
Projet FnR :
FNR7643621 - Predicting Individual Sensitivity Of Malignant Melanoma To Combination Therapies By Statistical And Network Modeling On Innovative 3d Organotypic Screening Models, 2013 (01/05/2015-30/04/2018) - Thomas Sauter
Organisme subsidiant :
CE - Commission Européenne
Disponible sur ORBilu :
depuis le 13 juillet 2018

Statistiques


Nombre de vues
221 (dont 8 Unilu)
Nombre de téléchargements
135 (dont 5 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
1
OpenCitations
 
1
citations OpenAlex
 
4
citations WoS
 
3

Bibliographie


Publications similaires



Contacter ORBilu