Article (Périodiques scientifiques)
Non-Negative Paratuck2 Tensor Decomposition Combined to LSTM Network for Smart Contracts Profiling
CHARLIER, Jérémy Henri J.; STATE, Radu
2018In International Journal of Computer & Software Engineering, 3 (1)
 

Documents


Texte intégral
article-IJCSE-132.pdf
Postprint Éditeur (466.29 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Blockchain; Tensor; Neural Network
Résumé :
[en] Background: Past few months have seen the rise of blockchain and cryptocurrencies. In this context, the Ethereum platform, an open-source blockchain-based platform using Ether cryptocurrency, has been designed to use smart contracts programs. These are self-executing blockchain contracts. Due to their high volume of transactions, analyzing their behavior is very challenging. We address this challenge in our paper. Methods: We develop for this purpose an innovative approach based on the non-negative tensor decomposition Paratuck2 combined with long short-term memory. The objective is to assess if predictive analysis can forecast smart contracts activities over time. Three statistical tests are performed on the predictive analytics, the mean absolute percentage error, the mean directional accuracy and the Jaccard distance. Results: Among dozens of GB of transactions, the Paratuck2 tensor decomposition allows asymmetric modeling of the smart contracts. Furthermore, it highlights time dependent latent groups. The latent activities are modeled by the long short term memory network for predictive analytics. The highly accurate predictions underline the accuracy of the method and show that blockchain activities are not pure randomness. Conclusion: Herein, we are able to detect the most active contracts, and predict their behavior. In the context of future regulations, our approach opens new perspective for monitoring blockchain activities.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Services and Data management research group (SEDAN)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
CHARLIER, Jérémy Henri J. ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
STATE, Radu  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Non-Negative Paratuck2 Tensor Decomposition Combined to LSTM Network for Smart Contracts Profiling
Date de publication/diffusion :
avril 2018
Titre du périodique :
International Journal of Computer & Software Engineering
ISSN :
2456-4451
Maison d'édition :
Graphy Publications
Volume/Tome :
3
Fascicule/Saison :
1
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 20 avril 2018

Statistiques


Nombre de vues
220 (dont 11 Unilu)
Nombre de téléchargements
377 (dont 10 Unilu)

citations OpenAlex
 
4

Bibliographie


Publications similaires



Contacter ORBilu