[en] We study the cohomology of the hairy graph complexes which compute the rational homotopy of embedding spaces, generalizing the Vassiliev invariants of knot theory. We provide spectral sequences converging to zero whose first pages contain the hairy graph cohomology. Our results yield a way to construct many nonzero hairy graph cohomology classes out of (known) non-hairy classes by studying the cancellations in those sequences. This provide a first glimpse at the tentative global structure of the hairy graph cohomology.
Disciplines :
Mathématiques
Auteur, co-auteur :
Khoroshkin, Anton; National Research University > Higher School of Economics, Moscow
Willwacher, Thomas; Eidgenössische Technische Hochschule Zürich - ETH > Department of Mathematics
ZIVKOVIC, Marko ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Differentials on graph complexes II: hairy graphs
Date de publication/diffusion :
octobre 2017
Titre du périodique :
Letters in Mathematical Physics
ISSN :
0377-9017
eISSN :
1573-0530
Maison d'édition :
Springer Science & Business Media B.V., Dordrecht, Pays-Bas