Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Extracting Statistical Graph Features for Accurate and Efficient Time Series Classification
LI, Daoyuan; Lin, Jessica; BISSYANDE, Tegawendé François D Assise et al.
2018In 21st International Conference on Extending Database Technology
Peer reviewed
 

Documents


Texte intégral
mvg.pdf
Preprint Auteur (2.89 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Time series classification; multiscale visibility graph; time series mining
Résumé :
[en] This paper presents a multiscale visibility graph representation for time series as well as feature extraction methods for time series classification (TSC). Unlike traditional TSC approaches that seek to find global similarities in time series databases (eg., Nearest Neighbor with Dynamic Time Warping distance) or methods specializing in locating local patterns/subsequences (eg., shapelets), we extract solely statistical features from graphs that are generated from time series. Specifically, we augment time series by means of their multiscale approximations, which are further transformed into a set of visibility graphs. After extracting probability distributions of small motifs, density, assortativity, etc., these features are used for building highly accurate classification models using generic classifiers (eg., Support Vector Machine and eXtreme Gradient Boosting). Thanks to the way how we transform time series into graphs and extract features from them, we are able to capture both global and local features from time series. Based on extensive experiments on a large number of open datasets and comparison with five state-of-the-art TSC algorithms, our approach is shown to be both accurate and efficient: it is more accurate than Learning Shapelets and at the same time faster than Fast Shapelets.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LI, Daoyuan ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Lin, Jessica
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Extracting Statistical Graph Features for Accurate and Efficient Time Series Classification
Date de publication/diffusion :
mars 2018
Nom de la manifestation :
21st International Conference on Extending Database Technology
Lieu de la manifestation :
Vienna, Autriche
Date de la manifestation :
from 26-03-2018 to 29-03-2018
Manifestation à portée :
International
Titre de l'ouvrage principal :
21st International Conference on Extending Database Technology
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 04 mars 2018

Statistiques


Nombre de vues
1195 (dont 13 Unilu)
Nombre de téléchargements
1576 (dont 11 Unilu)

citations Scopus®
 
12
citations Scopus®
sans auto-citations
12

Bibliographie


Publications similaires



Contacter ORBilu