Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Synthetic Data Generation for Statistical Testing
SOLTANA, Ghanem; SABETZADEH, Mehrdad; BRIAND, Lionel
2017In 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE'17)
Peer reviewed
 

Documents


Texte intégral
ASE17.pdf
Postprint Auteur (1.06 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Test Data Generation; Usage-based Statistical Testing; Model-Driven Engineering; UML; OCL
Résumé :
[en] Usage-based statistical testing employs knowledge about the actual or anticipated usage profile of the system under test for estimating system reliability. For many systems, usage-based statistical testing involves generating synthetic test data. Such data must possess the same statistical characteristics as the actual data that the system will process during operation. Synthetic test data must further satisfy any logical validity constraints that the actual data is subject to. Targeting data-intensive systems, we propose an approach for generating synthetic test data that is both statistically representative and logically valid. The approach works by first generating a data sample that meets the desired statistical characteristics, without taking into account the logical constraints. Subsequently, the approach tweaks the generated sample to fix any logical constraint violations. The tweaking process is iterative and continuously guided toward achieving the desired statistical characteristics. We report on a realistic evaluation of the approach, where we generate a synthetic population of citizens' records for testing a public administration IT system. Results suggest that our approach is scalable and capable o
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
SOLTANA, Ghanem ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
SABETZADEH, Mehrdad ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Synthetic Data Generation for Statistical Testing
Date de publication/diffusion :
2017
Nom de la manifestation :
32nd IEEE/ACM International Conference on Automated Software Engineering (ASE'17)
Lieu de la manifestation :
Illinois, Etats-Unis
Date de la manifestation :
from 30-10-2017 to 03-11-2017
Manifestation à portée :
International
Titre de l'ouvrage principal :
32nd IEEE/ACM International Conference on Automated Software Engineering (ASE'17)
Maison d'édition :
IEEE
ISBN/EAN :
978-1-5386-2684-9
Pagination :
872-882
Peer reviewed :
Peer reviewed
Focus Area :
Security, Reliability and Trust
Projet européen :
H2020 - 694277 - TUNE - Testing the Untestable: Model Testing of Complex Software-Intensive Systems
Organisme subsidiant :
CE - Commission Européenne
Disponible sur ORBilu :
depuis le 14 août 2017

Statistiques


Nombre de vues
377 (dont 28 Unilu)
Nombre de téléchargements
1634 (dont 20 Unilu)

citations Scopus®
 
45
citations Scopus®
sans auto-citations
43
citations OpenAlex
 
45
citations WoS
 
37

Bibliographie


Publications similaires



Contacter ORBilu