Article (Périodiques scientifiques)
The Next Evolution of MDE: A Seamless Integration of Machine Learning into Domain Modeling
HARTMANN, Thomas; Moawad, Assaad; FOUQUET, François et al.
2017In Software and Systems Modeling
Peer reviewed vérifié par ORBi
 

Documents


Texte intégral
sosysm2017-author-preprint.pdf
Preprint Auteur (1.19 MB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Domain modeling; Live learning; Model-driven engineering; Metamodeling; Cyber-physical systems; Smart grids
Résumé :
[en] Machine learning algorithms are designed to resolve unknown behaviors by extracting commonalities over massive datasets. Unfortunately, learning such global behaviors can be inaccurate and slow for systems composed of heterogeneous elements, which behave very differently, for instance as it is the case for cyber-physical systems andInternet of Things applications. Instead, to make smart deci-sions, such systems have to continuously refine the behavior on a per-element basis and compose these small learning units together. However, combining and composing learned behaviors from different elements is challenging and requires domain knowledge. Therefore, there is a need to structure and combine the learned behaviors and domain knowledge together in a flexible way. In this paper we propose to weave machine learning into domain modeling. More specifically, we suggest to decompose machine learning into reusable, chainable, and independently computable small learning units, which we refer to as microlearning units.These micro learning units are modeled together with and at the same level as the domain data. We show, based on asmart grid case study, that our approach can be significantly more accurate than learning a global behavior, while the performance is fast enough to be used for live learning.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
HARTMANN, Thomas ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Moawad, Assaad;  DataThings
FOUQUET, François ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
The Next Evolution of MDE: A Seamless Integration of Machine Learning into Domain Modeling
Date de publication/diffusion :
29 mai 2017
Titre du périodique :
Software and Systems Modeling
ISSN :
1619-1366
eISSN :
1619-1374
Maison d'édition :
Springer Science & Business Media B.V.
Peer reviewed :
Peer reviewed vérifié par ORBi
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 24 juillet 2017

Statistiques


Nombre de vues
341 (dont 15 Unilu)
Nombre de téléchargements
1552 (dont 13 Unilu)

citations Scopus®
 
31
citations Scopus®
sans auto-citations
30
OpenCitations
 
17
citations OpenAlex
 
33
citations WoS
 
30

Bibliographie


Publications similaires



Contacter ORBilu