

A198234


Decimal expansion of least x having 3*x^2+3x=4*cos(x).


3



1, 2, 8, 8, 3, 8, 9, 2, 3, 7, 3, 2, 2, 8, 2, 6, 9, 2, 0, 4, 4, 6, 9, 5, 3, 7, 6, 1, 9, 8, 4, 1, 5, 2, 6, 3, 6, 5, 4, 6, 9, 2, 7, 5, 3, 7, 0, 8, 5, 4, 5, 5, 9, 2, 9, 1, 2, 6, 9, 9, 7, 2, 0, 6, 3, 6, 3, 3, 2, 7, 2, 4, 5, 6, 6, 2, 9, 8, 9, 2, 8, 5, 0, 3, 6, 9, 9, 0, 3, 4, 9, 0, 3, 7, 6, 8, 8, 6, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A197737 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

least x: 1.28838923732282692044695376198415263654...
greatest x: 0.646435567527722588379133828108743889...


MATHEMATICA

a = 3; b = 3; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.2}, WorkingPrecision > 110]
RealDigits[r1](* A198234 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .64, .65}, WorkingPrecision > 110]
RealDigits[r2](* A198235 *)


CROSSREFS

Cf. A197737.
Sequence in context: A282791 A242168 A011288 * A197385 A010596 A131920
Adjacent sequences: A198231 A198232 A198233 * A198235 A198236 A198237


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 23 2011


STATUS

approved



