Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Time Series Classification with Discrete Wavelet Transformed Data: Insights from an Empirical Study
LI, Daoyuan; BISSYANDE, Tegawendé François D Assise; KLEIN, Jacques et al.
2016In The 28th International Conference on Software Engineering and Knowledge Engineering (SEKE 2016)
Peer reviewed
 

Documents


Texte intégral
li2016time.pdf
Preprint Auteur (302.08 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Time series mining has become essential for extracting knowledge from the abundant data that flows out from many application domains. To overcome storage and processing challenges in time series mining, compression techniques are being used. In this paper, we investigate the loss/gain of performance of time series classification approaches when fed with lossy-compressed data. This empirical study is essential for reassuring practitioners, but also for providing more insights on how compression techniques can even be effective in reducing noise in time series data. From a knowledge engineering perspective, we show that time series may be compressed by 90% using discrete wavelet transforms and still achieve remarkable classification ac- curacy, and that residual details left by popular wavelet compression techniques can sometimes even help achieve higher classification accuracy than the raw time series data, as they better capture essential local features.
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LI, Daoyuan ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BISSYANDE, Tegawendé François D Assise  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
KLEIN, Jacques  ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) > Computer Science and Communications Research Unit (CSC)
LE TRAON, Yves ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Time Series Classification with Discrete Wavelet Transformed Data: Insights from an Empirical Study
Date de publication/diffusion :
juillet 2016
Nom de la manifestation :
The 28th International Conference on Software Engineering and Knowledge Engineering (SEKE 2016)
Date de la manifestation :
from 01-07-2016 to 03-07-2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
The 28th International Conference on Software Engineering and Knowledge Engineering (SEKE 2016)
Peer reviewed :
Peer reviewed
Focus Area :
Computational Sciences
Disponible sur ORBilu :
depuis le 21 avril 2016

Statistiques


Nombre de vues
623 (dont 29 Unilu)
Nombre de téléchargements
492 (dont 12 Unilu)

citations Scopus®
 
11
citations Scopus®
sans auto-citations
8

Bibliographie


Publications similaires



Contacter ORBilu