Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Localizing Multiple Faults in Simulink Models.
LIU, Bing; LUCIA, Lucia; NEJATI, Shiva et al.
2016In 23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER 2016)
Peer reviewed
 

Documents


Texte intégral
Bing_SANER2016_orbiLU.pdf
Postprint Auteur (845.37 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Fault localization; statistical debugging; machine learning; decision trees; Simulink models
Résumé :
[en] As Simulink is a widely used language in the embedded industry, there is a growing need to support debugging activities for Simulink models. In this work, we propose an approach to localize multiple faults in Simulink models. Our approach builds on statistical debugging and is iterative. At each iteration, we identify and resolve one fault and re-test models to focus on localizing faults that might have been masked before. We use decision trees to cluster together failures that satisfy similar (logical) conditions on model blocks or inputs. We then present two alternative selection criteria to choose a cluster that is more likely to yield the best fault localization results among the clusters produced by our decision trees. Engineers are expected to inspect the ranked list obtained from the selected cluster to identify faults. We evaluate our approach on 240 multi-fault models obtained from three different industrial subjects. We compare our approach with two baselines: (1) Statistical debugging without clustering, and (2) State-of-the-art clustering-based statistical debugging. Our results show that our approach significantly reduces the number of blocks that engineers need to inspect in order to localize all faults, when compared with the two baselines. Furthermore, with our approach, there is less performance degradation than in the baselines when increasing the number of faults in the underlying models.
Centre de recherche :
Interdisciplinary Centre for Security, Reliability and Trust (SnT) > Software Verification and Validation Lab (SVV Lab)
Disciplines :
Sciences informatiques
Auteur, co-auteur :
LIU, Bing ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
LUCIA, Lucia ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
NEJATI, Shiva ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Bruckmann, Thomas;  Delphi Automotive Systems
Co-auteurs externes :
no
Langue du document :
Anglais
Titre :
Localizing Multiple Faults in Simulink Models.
Date de publication/diffusion :
2016
Nom de la manifestation :
23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering
Lieu de la manifestation :
Osaka, Japon
Date de la manifestation :
14-03-2016 to 18-03-2016
Manifestation à portée :
International
Titre de l'ouvrage principal :
23rd IEEE International Conference on Software Analysis, Evolution, and Reengineering (SANER 2016)
Peer reviewed :
Peer reviewed
Projet FnR :
FNR8003491 - Automated Debugging And Fault Localization Of Matlab/Simulink Models, 2014 (01/03/2014-14/07/2017) - Bing Liu
Organisme subsidiant :
FNR - Fonds National de la Recherche
Disponible sur ORBilu :
depuis le 27 janvier 2016

Statistiques


Nombre de vues
347 (dont 40 Unilu)
Nombre de téléchargements
611 (dont 21 Unilu)

citations Scopus®
 
29
citations Scopus®
sans auto-citations
26
citations OpenAlex
 
26
citations WoS
 
23

Bibliographie


Publications similaires



Contacter ORBilu