Communication publiée dans un ouvrage (Colloques, congrès, conférences scientifiques et actes)
Self-adaptive Change Detection in Streaming Data with Non-stationary Distribution
Zhang, Xiangliang; WANG, Wei
2010In Advanced Data Mining and Applications
 

Documents


Texte intégral
Wang.pdf
Postprint Éditeur (372.56 kB)
Demander un accès

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Change detection; Data stream; Self-adaptive parameter setting; Non-stationary distribution
Résumé :
[en] Non-stationary distribution, in which the data distribution evolves over time, is a common issue in many application fields, e.g., intrusion detection and grid computing. Detecting the changes in massive streaming data with a non-stationary distribution helps to alarm the anomalies, to clean the noises, and to report the new patterns. In this paper, we employ a novel approach for detecting changes in streaming data with the purpose of improving the quality of modeling the data streams. Through observing the outliers, this approach of change detection uses a weighted standard deviation to monitor the evolution of the distribution of data streams. A cumulative statistical test, Page-Hinkley, is employed to collect the evidence of changes in distribution. The parameter used for reporting the changes is self-adaptively adjusted according to the distribution of data streams, rather than set by a fixed empirical value. The self-adaptability of the novel approach enhances the effectiveness of modeling data streams by timely catching the changes of distributions. We validated the approach on an online clustering framework with a benchmark KDDcup 1999 intrusion detection data set as well as with a real-world grid data set. The validation results demonstrate its better performance on achieving higher accuracy and lower percentage of outliers comparing to the other change detection approaches.
Disciplines :
Sciences informatiques
Identifiants :
UNILU:UL-CONFERENCE-2010-447
Auteur, co-auteur :
Zhang, Xiangliang;  MCSE, King Abdullah University of Science and Technology, Saudi Arabia
WANG, Wei ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC) ; University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT)
Langue du document :
Anglais
Titre :
Self-adaptive Change Detection in Streaming Data with Non-stationary Distribution
Date de publication/diffusion :
2010
Nom de la manifestation :
The 6th International Conference on Advanced Data Mining and Applications (ADMA'2010)
Lieu de la manifestation :
Chongqing, Chine
Date de la manifestation :
19-21 November 2010
Titre de l'ouvrage principal :
Advanced Data Mining and Applications
Maison d'édition :
Springer, Berlin, Allemagne
ISBN/EAN :
978-3-642-17315-8
Collection et n° de collection :
Lecture Notes in Computer Science, 6440
Pagination :
334-345
Disponible sur ORBilu :
depuis le 13 mars 2014

Statistiques


Nombre de vues
167 (dont 0 Unilu)
Nombre de téléchargements
0 (dont 0 Unilu)

citations Scopus®
 
3
citations Scopus®
sans auto-citations
3
OpenCitations
 
1
citations OpenAlex
 
3

Bibliographie


Publications similaires



Contacter ORBilu