Article (Périodiques scientifiques)
Quantitative analysis of colony morphology in yeast
Ruusuvuori, Pekka; LIN, Jake; Shmulevich, Ilya et al.
2013In BioTechniques
Peer reviewed
 

Documents


Texte intégral
Yimaa-Biotechniquesreport.pdf
Postprint Éditeur (739.37 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Mots-clés :
Colony morphology; Image analysis; Software; Yeast; Phenotype; Timelapse
Résumé :
[en] Microorganisms often form multicellular structures,such as biofilms and structured colonies, which can influence the organism’s virulence, drug resistance, and adherence to medical devices. Phenotypic classification of these structures has traditionally relied on qualitative scoring systems that limit detailed phenotypic comparisons between strains. Automated imaging and quantitative analysis have the potential to improve the speed and accuracy of experiments designed to study the genetic and molecular networks underlying different morphological traits. We have developeda platform that uses automated image analysis and pattern recognition to quantify phenotypic signatures of yeast colonies. The strategy enables quantitative analysis of individual colonies, measured at a single time point or over a series of time-lapse images, as well as the classification of distinct colony shapes based on image-derived features. Phenotypic changes in colonymorphology can be expressed achanges in feature space trajectories over time, thereby enabling the visualization and quantitative analysis of morphological development. To facilitate data exploration, results are plotted dynamically through an interactive web application that integrates the raw and processed images across all time points, allowing exploration of the image-based features and principal components associated with morphological development. The web application YIMAA is available at http://yimaa.cs.tut.fi.
Centre de recherche :
- Luxembourg Centre for Systems Biomedicine (LCSB): Bioinformatics Core (R. Schneider Group)
Disciplines :
Biotechnologie
Auteur, co-auteur :
Ruusuvuori, Pekka
LIN, Jake ;  University of Luxembourg > Luxembourg Centre for Systems Biomedicine (LCSB)
Shmulevich, Ilya
Nykter, Matti
Scott, Adrian
Tan, Zhihao
Sorsa, Saija
Dudley, Aimee
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Quantitative analysis of colony morphology in yeast
Date de publication/diffusion :
19 novembre 2013
Titre du périodique :
BioTechniques
ISSN :
0736-6205
Maison d'édition :
Eaton Publishing Company, Natick, Etats-Unis - Massachusetts
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 06 janvier 2014

Statistiques


Nombre de vues
165 (dont 3 Unilu)
Nombre de téléchargements
309 (dont 0 Unilu)

citations Scopus®
 
18
citations Scopus®
sans auto-citations
14
OpenCitations
 
18
citations OpenAlex
 
24
citations WoS
 
16

Bibliographie


Publications similaires



Contacter ORBilu