Eprint diffusé à l'origine sur un autre site (E-prints, Working papers et Carnets de recherche)
Parametric Stein operators and variance bounds
Ley, Christophe; SWAN, Yvik
2013
 

Documents


Texte intégral
LS13para.pdf
Preprint Auteur (301.59 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Stein operators are differential operators which arise within the so-called Stein's method for stochastic approximation. We propose a new mechanism for constructing such operators for arbitrary (continuous or discrete) parametric distributions with continuous dependence on the parameter. We provide explicit general expressions for location, scale and skewness families. We also provide a general expression for discrete distributions. For specific choices of target distributions (including the Gaussian, Gamma and Poisson) we compare the operators hereby obtained with those provided by the classical approaches from the literature on Stein's method. We use properties of our operators to provide upper and lower variance bounds (only lower bounds in the discrete case) on functionals h(X) of random variables X following parametric distributions. These bounds are expressed in terms of the first two moments of the derivatives (or differences) of h. We provide general variance bounds for location, scale and skewness families and apply our bounds to specific examples (namely the Gaussian, exponential, Gamma and Poisson distributions). The results obtained via our techniques are systematically competitive with, and sometimes improve on, the best bounds available in the literature.
Disciplines :
Mathématiques
Auteur, co-auteur :
Ley, Christophe
SWAN, Yvik ;  University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Mathematics Research Unit
Langue du document :
Anglais
Titre :
Parametric Stein operators and variance bounds
Date de publication/diffusion :
2013
Disponible sur ORBilu :
depuis le 31 décembre 2013

Statistiques


Nombre de vues
90 (dont 1 Unilu)
Nombre de téléchargements
163 (dont 2 Unilu)

Bibliographie


Publications similaires



Contacter ORBilu