Article (Périodiques scientifiques)
Formal Analysis of the Probability of Interaction Fault Detection Using Random Testing
ARCURI, Andrea; BRIAND, Lionel
2012In IEEE Transactions on Software Engineering, 38 (5), p. 1088-1099
Peer reviewed
 

Documents


Texte intégral
TSE-2010-12-0367-2.pdf
Postprint Éditeur (449.38 kB)
Télécharger

Tous les documents dans ORBilu sont protégés par une licence d'utilisation.

Envoyer vers



Détails



Résumé :
[en] Modern systems are becoming highly configurable to satisfy the varying needs of customers and users. Software product lines are hence becoming a common trend in software development to reduce cost by enabling systematic, large-scale reuse. However, high levels of configurability entail new challenges. Some faults might be revealed only if a particular combination of features is selected in the delivered products. But testing all combinations is usually not feasible in practice, due to their extremely large numbers. Combinatorial testing is a technique to generate smaller test suites for which all combinations of t features are guaranteed to be tested. In this paper, we present several theorems describing the probability of random testing to detect interaction faults and compare the results to combinatorial testing when there are no constraints among the features that can be part of a product. For example, random testing becomes even more effective as the number of features increases and converges toward equal effectiveness with combinatorial testing. Given that combinatorial testing entails significant computational overhead in the presence of hundreds or thousands of features, the results suggest that there are realistic scenarios in which random testing may outperform combinatorial testing in large systems. Furthermore, in common situations where test budgets are constrained and unlike combinatorial testing, random testing can still provide minimum guarantees on the probability of fault detection at any interaction level. However, when constraints are present among features, then random testing can fare arbitrarily worse than combinatorial testing. As a result, in order to have a practical impact, future research should focus on better understanding the decision process to choose between random testing and combinatorial testing, and improve combinatorial testing in the presence of feature constraints.
Disciplines :
Sciences informatiques
Identifiants :
UNILU:UL-ARTICLE-2012-1226
Auteur, co-auteur :
ARCURI, Andrea;  Simula Research Laboratory, Norway
BRIAND, Lionel ;  University of Luxembourg > Interdisciplinary Centre for Security, Reliability and Trust (SNT) ; University of Luxembourg > Faculty of Science, Technology and Communication (FSTC) > Computer Science and Communications Research Unit (CSC)
Co-auteurs externes :
yes
Langue du document :
Anglais
Titre :
Formal Analysis of the Probability of Interaction Fault Detection Using Random Testing
Date de publication/diffusion :
2012
Titre du périodique :
IEEE Transactions on Software Engineering
ISSN :
0098-5589
Maison d'édition :
IEEE Computer Society
Volume/Tome :
38
Fascicule/Saison :
5
Pagination :
1088-1099
Peer reviewed :
Peer reviewed
Disponible sur ORBilu :
depuis le 09 mai 2013

Statistiques


Nombre de vues
249 (dont 9 Unilu)
Nombre de téléchargements
483 (dont 6 Unilu)

citations Scopus®
 
61
citations Scopus®
sans auto-citations
58
citations OpenAlex
 
65
citations WoS
 
43

Bibliographie


Publications similaires



Contacter ORBilu